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Vorwort 

In der vorliegenden Darstellung der Grundlehren der Hydrodynamik 

reibender Flissigkeiten war ich bemiiht, den Kreis der mathematischen 

Voraussetzungen in einer dem Forschungsgebiet entsprechenden Weise 

so ‘einzuschranken, daf das Verstindnis der mechanischen Vorgiinge 

nicht durch unnétige formale und methodische Schwierigkeiten gestort 

wird. Wenn der Leser mit den Grundsatzen der Strémungstheorie 

der idealen Fliissigkeit, der Methode der einfachen Vektorrechnung 

und mit den wichtigsten Differentialgleichungen und den zugeordneten 

speziellen (z. B. den Besselschen) Funktionen vertraut ist, so wird er 

das Werk unschwer lesen und im wesentlichen den Zugang zu den 

Originalarbeiten finden kénnen, wenn iiber diese auch nur gelegentlich 

und auszugsweise berichtet wurde. 

Der besondere Charakter meiner Arbeit ist wesentlich bestimmt 

durch die Bevorzugung anschaulicher Methoden und durch den 

Zusammenhang mit physikalischen Vorstellungen und versuchstechnischen 

Forschungsergebnissen, wie die zahlreichen den Text begleitenden Dia- 

gramme, Lichtbilder und Zeichnungen erkennen lassen. Wahrend die 

Erlauterungsskizzen, die sich schlieBlich jeder selbst herstellen kann, 

sehr stark eingeschrankt oder ganz weggelassen sind, ist um so 

groBerer Wert auf solche Zeichnungen gelegt worden, die einen ge- 

samten Bewegungsvorgang veranschaulichen und das Resultat einer 

Rechnung synthetisch vor Augen stellen. Hier hat der Verfasser auf 

die skizzenartige Wiedergabe fast vollkommen verzichtet und namentlich 

nur solche Strombilder geliefert, die nach rechnerisch-graphischer 

Methode punktweise genau konstruiert sind. Bis auf wenige Ausnahmen 

sind auch diejenigen Strombilder vom Verfasser neu berechnet worden, 

die bereits in der Literatur vorliegen. Ich darf mich der Erwartung 

hingeben, daB die dabei aufgewendete Miihe — und sie ist der Be- 

miihung um die mathematische Formgebung mindestens gleichwertig — 

nicht ganz vergeblich gewesen ist, und daB die Verbindung von Rech- 

nung und Zeichnung zur Forderung des Interesses und zur Unter- 

stiitzung und Belebung der Vorstellung einiges beitragen wird. 



VI Vorwort 

Da die Anlage des Ganzen aus dem ausfiihrlichen Inhaltsverzeichnis 

hervorgeht, bedarf es nur einiger Worte, um die Absichten des Ver- 

fassers zu erlautern. In dem ein Kapitel umfassenden allgemeinen Teil 

bin ich von dem allgemeinen elastischen Zustand der Materie aus- 

gegangen, um daraus auf mdglichst nattirlichem Wege die auf die zahe 

oder reibende Fliissigkeit beziiglichen Grundsitze und Grundgleichungen 

abzuleiten, insbesondere das Beschleunigungs- und Kraftgesetz, die Energie- 

und Impulssitze, die in den spiteren Kapiteln benutzt werden. Der 

dem Interesse der Abkiirzung wie der Anschaulichkeit dienende Ge- 

brauch der Vektorrechnung diirfte nach dem Erscheinen des ausgezeich- 

neten und fiir alle Anwendungen wertvollen Lehrbuches von Lagally 

nicht mehr als st6rend empfunden werden, um so weniger als in der 

vorliegenden Darstellung die Beziehung zum Bezugssystem niemals 

vollstiindig unterbrochen und dem Ubergang zu den wichtigsten krumm- 

linigen Koordinaten ein besonderer Paragraph gewidmet ist. 

In dem speziellen, eine gréBere Zahl von Kapiteln umfassenden 

Teil sollte dem Einfiihrungscharakter des Buches entsprechend ein all- 

mihliches Fortschreiten von den einfachsten zu schwierigeren und zu-. 

sammengesetzten Bewegungsvorgangen eingehalten und die Anordnung 

so getroffen werden, daf die verschiedenen Methoden, Problemstellungen 

und Begriffe méglichst nach der Reihe und an Hand von einfachen 

mechanischen Sonderfallen hervortreten. Um eine einigermafen voll- 

standige Zusammenfassung der mit einfachen mathematischen Hilfs- 

mitteln erreichbaren Losungen der hydrodynamischen Differential- 

gleichungen bieten zu kénnen, mufte eine gréBere Mannigfaltigkeit 

von physikalisch und technisch wichtigen Einzelfragen vorgefiihrt werden. 

Soweit es im Rahmen eines solchen Buches méglich war, habe ich 

dabei neben der neueren auch die altere Literatur — ich denke dabei 

etwa an die Untersuchungen von Helmholtz — beriicksichtigt, ferner 

auch mehrere auslandische, insbesondere franzésische, englische und 
nordische Arbeiten, die bei uns noch nicht den verdienten Eingang 
gefunden haben. Die Vielgestaltigkeit des Inhalts im einzelnen darf 
nicht verwechselt werden mit einer Vollstindigkeit der dargebotenen 
wissenschaftlichen Disziplin im ganzen. Abgesehen davon, da die all- 
gemeinen Methoden der Randwertprobleme, wie sie z. B. Oseen gibt, 
kaum in die Darstellung hineinspielen und viele mathematische Detail- 
betrachtuugen fehlen, so beschriinkt sich die physikalische Einzelunter- 
suchung im wesentlichen auf diejenigen Erscheinungsgruppen, die sich 
unter dem Gesichtspunkt des Reynoldsschen Ahnlichkeitsgesetzes be- 
trachten lassen, wihrend auf die genauere Analyse z. B. der Oberflichen- 
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erscheinungen, Wellenbewegungen und Schwimmvorgiinge, die durch 
andere und kompliziertere Ahnlichkeitsgesetze beherrscht werden, 

verzichtet werden mute. Das letzte, auf die Theorie der Turbulenz 

sich beziehende Kapitel hat mehr den Charakter eines der Ubersicht 

dienenden Anhanges angenommen. Bei der mathematischen und physi- 

kalischen Schwierigkeit dieses Forschungsgebietes, das bisher noch mehr 

wertvolle Versuche und Ansitze als gesicherte Resultate aufzuweisen 

hat, war eine verkiirzte und skizzenhafte Darstellung und gelegentliche 

Beschrankung auf die Angabe der wesentlichsten Ergebnisse fast un- 

vermeidlich. Sollte dem Buche das gliickliche Schicksal vergénnt sein, 

einen Platz in der Literatur von einer gewissen Dauer zu gewinnen, 

so wurde mir nichts willkommener sein als an seiner fortgesetzten 

Verbesserung zu arbeiten und alle Bausteine, die vom Standpunkt der 

Zukunft als vorlaufig gelten mtissen, durch neuere zu ersetzen, die 

einen groBeren Sicherheitsgrad: besitzen. 

Endlich noch einige Bemerkungen personlicher Art. Es ist mir eine 

angenehme Pflicht, mehrerer — ich darf wohl sagen — Mitarbeiter zu 

gedenken, die Wesentliches beigetragen haben zur Fertigstellung des 

Werkes in seiner jetzigen Gestalt. In erster Linie bin ich den Herrn 

Kollegen Professor Dr. H. Schmidt und Privatdozenten Dr. F. Eisner 

zu Dank verpflichtet fur die sorgfaltige und gewissenhafte Unterstiitzung 

beim Lesen der Korrektur und die wertvolle Ratgebung in vielen 

Hinzelfragen; ebenso sind mehrere Anregungen, die ich dem _persén- 

lichen Verkehr mit meinem Prager Kollegen Herrn Professor Dr. P. Funk 

verdanke, dem Buche zugute gekommen. Auch meine Assistenten, 

Herr Dr. Lindner und Herr Ing. R. Héger haben sich in dankens- 

werter Weise bemtht, mir meine Arbeit zu erleichtern, insbesondere 

bei der Herstellung vieler Zeichnungen und der Anfertignng des Namen- 

und Sachregisters. Ferner gedenke ich noch dankbar eines friheren 

Schiilers, des Herrn Dipl.-Ing. W. Bartels-Hannover, der bei den ersten 

Zeichnungen behilflich war. 

Endlich méchte ich nicht versiumen, auch dem bewahrten Verlag 

meinen schuldigen Dank abzustatten fiir das Entgegenkommen, das er 

meinen Wiinschen gegeniiber gezeigt hat und fiir die sorgfaltige Aus- 

stattung, die er dem Buche hat zuteil werden lassen. 

Hannover, Juli 1932 

WILH. MULLER 
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Einleitung. 

§ 1. Der allgemeine Begriff der Fliissigkeit. 

Unter dem Begriff der Fliissigkeit fa8t man alle Kérper zusammen, 
deren Teile einen nicht-starren Zusammenhang haben, die also durch das 

Fehlen der Formbestandigkeit ausgezeichnet sind. Durch eine derartige 

Abgrenzung gegeniiber den starren Kérpern wird aber nur sehr wenig Posi- 

tives tiber die besonderen Eigenschaften des fliissigen Zustandes der 

Materie ausgesagt, so daB man auch die gasférmigen Korper als fliissig 

oder flieBend bezeichnen kann. In der Tat ergibt sich die Berechtigung 

dieser Begriffserweiterung aus einer groBen Zahl von Gesetzen des Gleich- 

gewichtes und der Bewegung, die allen nicht-starren Medien gemeinsam 

sind. Die Unterschiede sind aber doch groB genug, um eine Trennung zu 

rechtfertigen, die man einfach dahin formulieren kann, da der typischen 

oder tropfbaren Fliissigkeit die Eigenschaft der Volumbestandigkeit zu- 

kommt, wahrend das Volumen des typischen Gases in hohem Mae von 

Druck und Temperatur abhaingt. Wir werden uns in der Hauptsache mit 

den echten Flissigkeiten befassen und die Gasbewegung nur soweit beriick- 

sichtigen, als man berechtigt ist, auf sie die Gesetze der Fliissigkeiten an- 

zuwenden, also von der Volumenanderung abzusehen. 

Die Gruppe von Kérpern, die man nach diesen Einschrankungen als 

echte Fliissigkeiten bezeichnen kann, zeigt aber noch eine so groBe Mannig- 

faltigkeit von Zustanden und Eigenschaften, da} eine weitere Aufteilung 

geboten erscheint. Wie bereits bei der Aufstellung des Begriffes der 

Starrheit bediirfen wir dabei einer Abstraktion, die sich fiir die Verfolgung 

der quantitativen GesetzmaBigkeiten als iuBerst fruchtbar erweist. Ks ist 

bekannt, daB das Verhalten vieler echter Flissigkeiten, z. B. des Wassers, 

besonders im Gleichgewichtszustand und unter bestimmten einfachen Be- 

wegungsbedingungen sehr vollstiindig beschrieben werden kann, wenn 

man annimmt, da kein innerer Widerstand gegen Formanderung oder 

keine innere Reibungsspannung zwischen den sich bertihrenden Schichten 

auftritt, daB also der Druck (z. B. auf einen eingetauchten Kérper) stets 

senkrecht zur Angriffsflaiche gerichtet und unabhingig ist von der Stellung 

Miiller, Theorie der zaihen Fliissigkeiten. 1 



2 Einleitung. 

dieser Fliche. Dieses Verhalten, das fiir viele Fliissigkeiten unter be- 

stimmten Voraussetzungen zutrifft, faBt man bekanntlich unter dem 

Begriff der idealen Fliissigkeit zusammen. Aber es gibt auch fir 

Fliissigkeiten wie Wasser, die sich zunichst in vielen Fallen ideal ver- 

halten, so viele Ausnahmeerscheinungen wesentlicher Art, daf} man auf 

die Dauer und fiir eine vollstandige Erklirung der Bewegungsvorgange 

ohne Erweiterung der Grundbegriffe, also ohne Einfiihrung der inneren 

Reibung, nicht auskommen kann. Man braucht nur an die jeder Erfahrung 

widersprechende Folgerung aus dem Begriff der idealen Fliissigkeit zu 

denken, die besagt, da ein in einer Fliissigkeit translatorisch bewegter 

Kérper keinen Widerstand findet, eine Folgerung, die besonders fir fast 

alle technischen Anwendungen ganz unannehmbar ist. Es wird sich zeigen, 

da8 auch die unmittelbar technisch verwendbaren, von der Theorie der 

idealen Fliissigkeit gelieferten Krafte, wie z. B. die Auftriebswirkung bei 

Flugzeugtragfliigeln oder die treibenden Krafte bei Turbinen, in letzter 

Linie auf innere Reibung zwischen den Flissigkeitsteilchen zurtickzuftihren 

sind. Den entscheidenden Gesichtspunkt fiir die dynamische Beurteilung 

und Unterscheidung der verschiedenen Fliissigkeiten liefert nicht die innere 

Reibung selbst, sondern der damit verwandte Begriff der Zihigkeit, der 

in einfachster Weise mit der Reibung und der Dichte zusammenhingt. Mit 

Hilfe dieses zahlenmaBbig festlegbaren Begriffes ist nicht nur die einzelne 

Flissigkeit in bestimmter Weise gekennzeichnet und die Méglichkeit einer 

natiirlichen Ordnungsskala gegeben; es gelingt auch auf der Grundlage 

der Zahigkeitsbestimmung, eine ganz neue Gruppe von Erscheinungen, die 

sich sonst nur oberflichlich erklairen lassen — man denke an die fiir die 

Technik so wichtigen Krifteverhiltnisse bei der Reibung in geschmierten 

Maschinengelenken und Zapfen —, der strengeren Untersuchung zugang- 

lich zu machen. 

Die Beriicksichtigung der tangentialen Spannkrafte oder der Reibungs- 

spannung fiihrt zu dem Begriff der zihen Fliissigkeit, als deren in 

der Natur nur naiherungsweise vertretene Grenzform die ideale Fliissig- 
keit aufzufassen ist. In ihrer allgemeinen Bedeutung tritt die Zihigkeit 
erst dann hervor, wenn man die Fliissigkeit dem allgemeinen elastischen 
Zustand unterordnet. In diesem Sinne werden wir im folgenden von dem 
elastischen Deformations- und Spannungszustand und seinen gesetz- 
maBigen Beziehungen auszugehen und die besonderen Folgerungen zu ent- 
wickeln haben, die sich ergeben, wenn man auf die durch Erfahrung ge- 
wonnenen Kigenschaften der Fliissigkeiten, also z. B. die Volumbestindig- 
keit oder Unzusammendriickbarkeit, Riicksicht nimmt. 
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ERSTES KAPITEL. 

Allgemeine Grundlagen und Grundgleichungen. 

§ 2. Der Deformationstensor. 

Die Bewegung einer Fliissigkeit kann mathematisch durch das Vektor- 
feld der Geschwindigkeit der einzelnen Teilchen dargestellt werden. 
Bei einer solchen Bewegung ist nun jedes Fliissigkeitselement im all- 

gemeinen bestandigen Forminderungen ausgesetzt, die in einem bestimm- 

ten Zeitpunkt von Ort zu Ort verschieden ausfallen werden. Wie wir 

uns die Fliissigkeit als eine kontinuierlich zusammenhangende Masse vor- 

stellen, so wollen wir auch fiir die vom Ort abhingige innere Verschiebung 

der Teile das Prinzip der Stetigkeit voraussetzen. Nun lat sich die 

értlich bezogene Deformation durch den Unterschied der Verschiebungs- 

geschwindigkeiten zweier benachbarter Punkte P und P’ darstellen. 

Wie alle gerichteten oder VektorgréBen, die wir zu betrachten haben, 

werden wir den Geschwindigkeitsvektor mit einem deutschen Buch- 

staben (v) bezeichnen oder ihn durch die Komponenten v,, v,, v, in bezug 

auf ein gewohnliches rechtwinkliges und rechtsdrehendes Koordinaten- 

system x, y, z darstellen. Wenn man den Ubergang vom Punkt P zum 

Nachbarpunkt P’ durch das Differential 6 ausdriickt (zum Unterschied 

vom zeitlichen Differentialzeichen d), so werden die Komponenten der 

Relativgeschwindigkeit beider Punkte 

(1) bv = 0a + Si dy + Gade (Ne eras 

Bezeichnet man den vom Anfangspunkt zum Aufpunkt gezogenen Orts- 

vektor mit r und den symbolischen Vektor der raumlichen Differen- 

tiation (ee. a 5) abgekiirzt mit ” (Nabla), so lassen sich die drei 

Gleichungen (1) in die eine Vektorgleichung zusammenziehen?) 

(la) dv=d0r-F»v. 

Nach Einfiihrung der fiir die Folge wichtigen GroBen 

OU, Ovy , Ov, 
ee Ya Oy’ 2 pee 

NG Jo ae eel) mL Cre CU; Oy oe 

As) Yur 9 | dz 1 ab ea ee +e)? Yu = alo + ae) 
(oe a), i (Ge Se) we=a(Ge— 5) 

TONES Te Gat Va reer. Oy Oz 

1) Wir legen im folgenden die Bezeichnungen zagrunde, wie sie in dem Buche 

von M. Lagally, Vorlesungen iiber Vektorrechnung, Leipzig 1928, gebraucht 

werden. 
1* 
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erhalten wir nach einfacher Umformung z. B. fiir die 2-Komponente den 

Ausdruck 

(3) Ove = 20% + Yx20y + Yx20% + Wydz — w20y, 

und die entsprechenden Ausdriicke fiir dv, und dv, ergeben sich hieraus 

durch zyklische Permutation der Indizes. 

Die beiden letzten Glieder stellen nun die x-Komponente des Vektor- 

produkts w x dr der beiden Vektoren w(w,, w,, w,) und Or (On, OY. 02), 

also einen neuen Vektor dar, der senkrecht 

steht auf w und dr und so orientiert ist zu 

den Vektorfaktoren, daB w, dr und wx 6r 

ef ein Rechtssystem bilden: das ist aber nichts 

(py! anderes als der Vektor der Geschwindig- 

Ot keit, die der Punkt P’ annimmt, wenn er 

um die Achse w im positiven Sinne mit 

p der Winkelgeschwindigkeit w rotiert (vgl. 

Abb. 1). Der Vektor w, der demnach die 

Abb. 1. Relativgeschwindigkeit Innere Rotation der Flissigkeit an der be- 

m0 

bei der Drehung. trachteten Stelle charakterisiert, wird auch 

als Wirbelvektor bezeichnet. Ls _ ist 

ohne weiteres klar, dal} diese Verdrehung eines Teilchens auf seine Ver- 

zerrung ohne Hinflu® bleibt. 

Die eigentliche oder reine Deformation wird daher durch die ersten 

Gleder des Ausdruckes (3) bestimmt, und zwar ergibt sich aus einer ein- 

fachen Uberlegung, daB ¢,, ¢ y €, die Geschwindigkeiten der Streckung (bzw. 

op e | a 

1 pies 2 . 

Abb. 2a. Translation Abb. 2b. Streckung. Abb. 2¢. Schiebung. 
und Drehung. 

Zusammenziehung) eines Fliissigkeitselementes in den Koordinatenrich- 
tungen und die GréBen Vie ect ey die Geschwindigkeiten der Winkel- 
inderungen in den zu den Koordinatenachsen senkrechten Ebenen be- 
deuten. Wir haben in den obenstehenden Abb. 2 die drei Verschiebungs- 
formen in der Ebene an einem Fliissigkeitselement veranschaulicht, das 
nach Verlauf eines kleinen Zeitintervalls von der Lage 1 in die Lage 2 iiber- 
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geht. Wahrend die Drehung die Gestalt des Quadrates ungeandert labt, 
wird es im zweiten Fall ohne Winkelanderung gestreckt, wahrend bei der 
Schiebung eine derartige Verzerrung eintritt, da der urspriinglich rechte 

Winkel sich um den Betrag oe — verkleinert bzw. vergréBert. 

Das gesamte sechsgliedrige System der Groen (2) wird der Defor- 

mationstensor oder der Tensor der Deformationsgeschwindigkeiten 

genannt. Die Verkniipfung seiner Komponenten mit dx, dy, dz in den 

Ausdriicken fiir die Geschwindigkeitsunterschiede, die also auf eine Vektor- 

bildung hinauskommt, kann man unter Verallgemeinerung einer bekannten 

Begriffsbildung der Vektorrechnung als inneres Produkt des abgekiirzt 

mit D bezeichneten Tensors mit dem Vektor dr bezeichnen. Dann lassen 

sich die Gleichungen (3) in anschaulicher Vektorschreibweise zusammen- 

ziehen zu 

(3a) dv=D-dr+wm xX or. 

DaB der Tensor D die Verzerrung vollstindig charakterisiert, ergibt 

sich auch daraus, da die Anderung des Abstandsquadrates der beiden 

Punkte P und P’ als Funktion der Komponenten von D dargestellt 

werden kann. Da namlich nach Ablauf der Zeit dé den Punkten P und P’ 

die Ortsvektoren 

r+ovdt, bzw. r+ dr+(0+dr-Vv)dt 

entsprechen, von denen die Projektionen auf die 2-Achse lauten 

Og» Oey | Oy ~ 
x+vurcdt, baw. x+da+ (v. ab ae Oat iy Oy+ a dajdt, 

so wird die zeitliche Anderung des Abstandes 

d(dr) = 0r-F vdt 

oder 

(4) d(Ox)2?=2 dt[eéx (Oa)? +ey(0 y)2 +éz (02)? +2 yy20 yOZ+-2 7x20 20242 YxyOxdyl, 

wenn wir in der Entwicklung die quadratischen Glieder vernachlassigen. 

Wenn wir die Klammerfunktion F (6,,0,,6,) gleich einer Konstanten 

setzen, so erhalten wir in 

(5) F=€x(0x)? + éy(Oy)? + €2 (02)? + 2 vyz0yOz+ 2 7x20x02+ 2 yxydady =konst. 

die Gleichung eines den Punkt P als Mittelpunkt umgebenden Ellipsoids 

mit dz, dy, Oz als laufenden Koordinaten, das man als Deformations- 

ellipsoid zu bezeichnen pflegt, weil es das Verhalten des Deformations- 

tensors vollkommen charakterisiert. Da namlich die partiellen Ableitungen 

von F' nach den Koordinaten mit den Verschiebungsgeschwindigkeiten (1) 

proportional sind, so ergibt sich, daB jeder dem Punkt P benachbarte 
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Punkt P’ sich gegen P in Richtung der Normalen des zugehorigen Ellip- 

soids verschiebt. Die Hauptachsen des Ellipsoids sind die Hauptachsen 

der Deformation. Liegt der Punkt P’ auf einer dieser Hauptachsen, 

des Ellipsoids, so erfahrt die Verbindung PP’ eine reine (positive oder 

negative) Streckung. Wenn wir das in die Hauptachsen fallende Bezugs- 

system mit x’ y'z’ bezeichnen, und die entsprechenden Deformationsglieder 

€,=61, €& =e, &,=6& setzen, so gewinnen wir aus dem beistehenden 
y : 

Schema der Richtungskosinusse die Transformationsgleichungen 

\u y 2 

gihmm we=ha +hy + hz vz = Lv, + hvy + lv, 
, i J. , y \lemen2 y= mx + my + msz Vy = MV; + Mody + Ms ¥! 

“ f ul , , , 
z \lgm3n3  2= m2 + ney + nsz Vz = M1U~ + nev, + NV; 

aus denen 

Ov, Ox r Ovy r Ovz 2 

Sr aor more Oy! Series 

usw. folet. Demnach erhalten wir fiir die Tensorkomponenten die 

Transformationsgleichungen 

| és = UB 2 ae é2 + Ue Es, Yyz = MiN1 £1 + M2N2 Eo + M3NZE3, 
2 z . (6) éy= mie, +mee,+mieés, Yer =hnia + leneéo + Isnsés, 

eee ny & + Ns Ey sis Nate: Yay =lmzé1 + le me é2 + Isms és, 

die z. B. die Beziehung liefern: 

(7) &a + 8y + €g = 61 4 €2 4 és 

Die Summe der Dilatationskomponenten erster Art hat 

also fiir jedes durch den Punkt P gezogene Achsenkreuz den- 

selben Wert oder ist von der besonderen Wahl des Achsen- 

kreuzes unabhingig. 

Dieser Satz findet seine unmittelbare anschauliche Bestitigung durch 
die Bemerkung, daB diese Summe, die auch als Divergenz der Geschwin- 
digkeit div » = /- v bezeichnet wird, die raumliche Dilatation oder die 
bei der Dehnung eintretende VergréBerung des Einheitsvolumens dar- 
stellt. Bei inkompressiblen oder volumbestiindigen Fliissigkeiten hat 
man daher im besonderen die Gleichung 

P = OU OU an OUe (8) div ati at a ae = 9; 

die wir spiter den speziellen Anwendungen zugrunde legen werden, wenn 
es auch zunichst empfehlenswert erscheint, in den allgemeinen Ansatzen 
die Divergenz der Geschwindigkeit als eine von Null verschiedene Gré8e 
mitzufiihren. Wenn wir eine strémende Fliissigkeit, deren Dichte konstant 
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sein mége, auf eine raumfeste, geschlossene Elementarflache, etwa ein 
elementares Parallelepiped mit den Seitenlangen dx, dy, dz, also dem 
Volumen dt=dx-dy-+dz, beziehen, so haben wir in der x-Richtung als 

eintretende bzw. austretende Fliissigkeitsmenge 

Ov, 3 

(qe), = Vx'dydz baw. (day =(v2+ da Ue |dy dz 

und entsprechend fiir die beiden anderen Richtungen. Addieren wir die 

Differenzen q¢,—q, fiir die drei Richtungen, so ergibt sich, daB 

dt-V-» 

der UberschuB der aus dem Volumen dt austretenden Flissigkeits- 

menge tiber die eintretende Menge darstellt. Die Divergenz wird also 

nur dann einen von Null verschiedenen Wert haben, wenn die Hiill- 

flache sogenannte Quellen oder Senken einschlieBt, in denen Fliissigkeit 

entsteht oder verschwindet und der Wert der Divergenz wird gleichzeitig 

ein MaB fiir die Ergiebigkeit der Quellen. Die Verallgemeinerung dieser 

Betrachtung auf eine endliche geschlossene Flache F gibt der sogenannte 

GauSsche Integralsatz, der von der Potentialtheorie her bekannt ist") 

und hier nur hydrodynamisch veranschaulicht werden soll. Bezeichnen 

wir den Kinheitsvektor in Richtung der iuBeren Normalen des Flaichen- 

elementes df mit n, so ist die Normalkomponente der Geschwindigkeit 

v, =vndf und der Uberschu8 der durch die Fliche austretenden iiber 

die eintretende Menge wird durch das Integral 

(9) fendi = pornaj 
F F 

dargestellt. Da diese Menge dem Raumintegral der Divergenz fiir die 

eingeschlossene Fliissigkeit gleich sein mu, so hat man die Gleichung 

frndj= [PF -vdr. 
F T 

Wenn keine Quellen oder Senken in dem Raumgebiet 7’ vorhanden sind, 

so gewinnen wir in 

(10) p ond f = 0 
F 

die allgemeine Kontinuitatsgleichung fiir die inkompressible Flissigkeit. 

§ 3. Beziehung zwischen Deformation und Spannung. 

Durch die Deformation der Fliissigkeit werden innere Krafte her- 

vorgerufen, die auf die Flicheneinheit bezogen als Spannungen 

1) Vgl. etwa M. Lagally, a.a.O. 8. 131. 
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bezeichnet werden. Fiir jede innerhalb der Fliissigkeit gelegene F lache 

treten diese Krafte bekanntlich paarweise auf als entgegengesetzte 

Wirkungen der beiden Teile I und II der 

Fliissigkeit, die sich in der Flache berithren. 

Wenn wir uns einen Teil I herausgetrennt 

denken, so ist jedem Element der Grenz- 

fliche eindeutig derjenige Spannungs- 

bee vektor p zugeordnet, welcher der an dieser 

Stelle herrschenden Wirkung des benach- 

ae barten Gebietes II auf I entspricht. Dieser 

allgemein zur Flaiche schief gestellte Vektor 

laBt sich in eine normale Zug- oder Druck- 

komponente und in eine in der Flache 

Z 

x 

Abb. 3. Elementares Parallel- 
epiped. wirkende Tangential- oder Schubspannungs- 

komponente zerlegen. Um die Spannungs- 

komponenten dem Bezugssystem anzupassen, betrachten wir ein elemen- 

tares Parallelepiped, dessen Kanten den Bezugsachsen parallel sind 

(Abb. 3). Dann mégen in den Begrenzungs- 

ebenen die Normalspannungen a, ¢,, 0, wirken, 
Zz 

die zunichst aus formalen Griinden als positiv 

oder als Zugspannungen eingefiihrt werden sollen. 

Die in den Ebenen wirkenden Schubspannungen 

yz Txz> Try USW. bezeichnet werden, 

und zwar soll z. B. t,,, die in der Ebene normal 

y mogen durch t 

zur y-Achse in der w-Richtung auftretende Span- 

nung bedeuten. Die gesamte Zuordnung entspricht 

a wieder dem Charakter eines Tensors, und es wird 

ROE Carlccen te sich zeigen, daB diesem Spannungstensor ganz 

fotraueder: ihnliche Kigenschaften zukommen wie dem Defor- 

mationstensor, mit dem er in inniger Beziehung 

steht. So ergeben sich z. B. aus der Tatsache, daB die Krafte am Parallel- 

epiped keine Drehungen hervorrufen diirfen, die Beziehungen der Sym- 

metrie 
(1) Tyz = Tzy, Taz = Tza, Try = Tyx. 

Wenn wir dagegen ein elementares Tetraeder betrachten, das von drei 
zu den Koordinatenflachen parallelen Flachen f,, /,, f, und einer vierten, 
schief gelegenen Flache f begrenzt wird (Abb. 4), so lauten die Gleich- 
gewichtsbedingungen bei Vernachlissigung der Raumkrifte, die gegentiber 
den Flachenkraften von héherer Ordnung unendlich klein sind, 

Pnx: f = Ox fa == Try fy =F Taz fz : 
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HeiBen 1, m, n die Richtungskosinus fiir die Normale der FlAche io) 
ergeben sich daraus sich die Cauchyschen Gleichungen 

Dna = Oxl + Taym + Tazn, 

(2) | Dny = Tayl + Oym + Tyzn, 

Prez — Tazl + TyzmMm + O02n. 

Wenn wir den Spannungstensor P nennen, so lassen sich die drei 
Gleichungen (2) in der Form 

(2a) Dn =P-n 

zusammenfassen, oder der zur Fliche f gehérige Spannungsvektor liBt 

sich als inneres Produkt des Spannungstensors P und des Ein- 

heitsvektors n (J, m, n) in Richtung der Normalen darstellen. 

Auch im Tensorfeld der Spannungen gibt es durch jeden Feldpunkt 

drei ausgezeichnete Richtungen, die Richtungen der Hauptspannungen, 

die senkrecht auf den zugehérigen Flachen stehen, und die zugleich die 

Hauptachsenrichtungen des entsprechenden Spannungsellipsoids sind. 

Die Hauptspannungen 0), os, 0; und ihre Richtungskosinus erhalt man, 

wenn man in den Gleichungen p,,, = 0-1, Py, =0°M, P,, = 0° Nn setzt. 

Durch Elimination der Richtungskosinusse ergibt sich eine Gleichung 

3. Grades fiir p, und die Form dieser Gleichung zeigt auch, da die den 

drei Wurzeln 0;, 62, 0, entsprechenden Richtungen (l,, m1, 1 usw.) auf- 

einander senkrecht stehen!). Man sieht ferner ohne weiteres ein, dah 

die Achsenrichtungen des Deformations- und des Spannungsellipsoids 

zusammenfallen miissen, da eine reine Dehnung immer nur reine Normal- 

spannungen erzeugen kann. Um die Beziehungen zwischen den Tensoren 

festzustellen, gehen wir von den Hauptachsen w’, y’, z’ aus und denken uns 

eine ebene Flache senkrecht zur w-Achse, die mit den Hauptebenen ein 

elementares Tetraeder bildet. Dann ergibt sich wie oben, z. B. fiir die «x- 

und y-Komponente 

def =0,fl +o, fli +o, fl; 

byzf = 0,fm,n, + O,f/m,n, +6,/m,N, - 

Wenn man mit / dividiert und dasselbe Verfahren fiir die y- und z-Rich- 

tung durchfiihrt, so entstehen die Transformationsgleichungen 

6; = 0,1? +0,1; + 0,13, Tye = 0, M,N, + 0,M,N, +0,M,N; , 
= 2 a 2 2 E eo 

(3)4 0y =0,m;, 4-0,m, + 0,%,, Caz =0,1,N, 1+ 051,0, 1-0,1,%, , 
eA) eee) 5 ie ee 5 és 

Oz = 0, Nn} + O,N, +0403; Tay = 0,1,m, + 0,1,m, + 0,1,m,, 

1) Kine Beweisfiihrung findet man z. B. in A.E.H. Love, Treatise on the 

theory of elasticity, 3. Aufl, Cambridge 1929. 



10 Allgemeine Grundlagen und Grundgleichungen. 

die mit den friiher fiir die e und y aufgestellten Gleichungen wberein- 

stimmen. Damit bestitigen sich auch die unter (1) gegebenen Beziehungen, 

die die Symmetrie der beiden Grundtensoren aussagen, und wir erhalten 

auBerdem 

(4) Ox + Oy + Oz = 61 + G2 + 03 = konst. 

Die Summe der Normalspannungen fiir drei zueinander 

senkrechte Ebenen in einem Punkt ist also konstant. 

Zur Aufstellung der Relationen zwischen den Komponenten o und ¢ 

beider Tensoren gehen wir von den Hauptebenen aus. Wir kénnen dann 

lineare Gleichungen von der Form ansetzen 

C= = Pr Ca tx 4p weal Va cn 

Op = = OF ODEN + 2 é =e Ves 

03 = — p+ Cg é1 + Ps éo + Ys €s- 

Da das fliissige Medium als isotrop vorausgesetzt wird, also keine Rich- 

tung als bevorzugt gilt, so erhalt man durch zyklische Permutation 

01 = P2=Ys, Pi = Vg = Us, V1 = Oo = fa. 

Ebenso mu aber auch der Unterschied zwischen den beiden tangen- 

tialen Richtungen auf emer Hauptebene wegfallen, daher auch /\= 7, 

ds = Ye, dg =f, sein. Es kommt daher nach Einfiihrung neuer Koeffizien- 

tenbezeichnungen 

| 01 =—p+A-divv+2uea 

(5) 62 =—ptA-divv+2Ué 

| 03 =—p+Ad-divv+ 2ues. 

Wendet man hierauf die Transformationsgleichungen (3) und (5) an 

so ergeben sich die allgemeinen Beziehungen 
> 

eee yh era >) eG A Oz = —p+A-divo+ 2uéz, Tyz = 2 Yyz 5 

(6) Oy = —p+A-divnv + 2uéy, Tae = 2 inc, 
0z=—p+-divno+ Qué, Try = 2 Yay, 

die jetzt naiher diskutiert werden sollen. 

Wenn man die drei ersten der Gleichungen (6) addiert, so erhalt man 

(7) Ox + Oy + 0z = — 3p +(3A+4 2u)-divo. 

Definiert man nun p als den mittleren an der betrachteten Stelle 
herrschenden Druck, d. h. als negatives arithmetisches Mittel der Normal- 
Spannungen, so ist fiir den allgemeinen Fall 2— —2u zu setzen. Fir 
inkompressible Fliissigkeiten hat man 

5 = —— » o Rl € 
(6a) Or = — P+ Alte, usw., Tyz = 2lVyz usw. 
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Das zweite System von Gleichungen driickt die einfache Propor- 
tionalitat zwischen den Schubspannungen und den Deformationsgréen 
zweiter Art aus. Wenn z. B. die Fliissigkeit in ebenen Schichten parallel 
zur «y-Ebene in Richtung der x-Achse strémt, so reduzieren sich die 
Gleichungen (6a) auf die einfache Beziehung 

Ov, 
Taz = [ta 

Oz 

Die Schubspannung hat also den Charakter einer inneren Reibung, 

die dem Geschwindigkeitsgefille senkrecht zu den Strémungsebenen 

proportional ist und auf die Strémung eine bremsende bzw. schlep- 

pende Wirkung ausiibt. Der Faktor mw, der der Fliissigkeit eigen- 

tiimlich ist, heiBt der Koeffizient der inneren Reibung. Wenn wir fiir 

Kraft, Lange und Zeit die Kinheiten g (Grammgewicht), cm (Zentimeter) 

und s (Sekunde) benutzen, so ist die Dimension von ™ gegeben durch 

(ie —[osem= 7). 

Dieser Reibungskoeffizient ist eine fiir die folgenden Betrach- 

tungen sehr wichtige GréBe, die in allen, besonders den auf die Be- 

stimmung der Flissigkeitskrafte sich beziehenden Ansitzen einen ent- 

scheidenden EKinfluB8 hat. Mit den Methoden zur experimentellen Be- 

stimmung von “ werden wir uns spater ausfiihrlich auseinander zu 

setzen haben. 

Fiir die beiden technisch wichtigsten Fliissigkeiten Wasser und Luft 

hat der Reibungskoeffizient allerdings sehr kleine Werte (fiir Wasser 

etwa 0,018 und Luft 0,00017 g-s:cm~-2 bei einer Temperatur von 0°), 

und man kann daher mit einer gewissen Berechtigung innerhalb einer 

gewohnlichen Strémung die Reibungsglieder vernachlassigen. Es zeigt 

sich aber, da man dabei fiir die meisten wirklichen Falle doch einen 

Fehler begeht, der das MaB des Zulissigen iibersteigt und namentlich 

groBer ist, als die GréBenordnung der Gleichungsglieder ahnen abt. 

Denn in der unmittelbaren Nachbarschaft der begrenzenden Wande, an 

denen erfahrungsgem&B die Flissigkeit haftet, hat der Geschwindigkeits- 

gradient se in Richtung der Normalen einen grofen Wert, und daher 

auch der Ausdruck yu ie eine merkliche GréBe, die nicht mehr vernach- 

lassigt werden darf. Kine eingehende Untersuchung ergibt aber, dai 

der Einflu8 der Wandreibung geniigt, um das Strombild auch im Innern 

der Fliissigkeit, jedenfalls in bestimmten Gebieten, und daher zugleich 

die Druckverhaltnisse daselbst sehr weitgehend zu verandern. Wir werden 

spiter auf diese Fragestellung zuriickkommen. 
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§ 4. Die allgemeinen Bewegungsgleichungen. 

1. Um die Differentialgleichungen der Bewegung einer Fliissigkeit 

moglichst allgemein und unabhingig vom Koordinatensystem abzuleiten, 

denken wir uns ein beliebig geformtes Volumen 7’ aus dem Fliissigkeits- 

gebiet herausgetrennt. Wenn wir dann eine eingepragte, auf die Einheit 

der Masse bezogene Kraft f annehmen und den Ausdruck P-n fiir den 

Spannungsvektor in einem Punkt der Berandung F benutzen, so ergibt 

sich aus der Newtonschen Grundgleichung der Dynamik 

(1) [otar+ fP-naf=[oipar. 

T F p 
Das Oberflachenintegral laBt sich nun nach dem Gaufischen Lehrsatz 

in ein Raumintegral verwandeln; diesen Satz, der bereits in § 2 fiir den 

Geschwindigkeitsvektor benutzt wurde, kann man namlich ohne weiteres 

auf Tensoren tibertragen, die sich, wie bekannt, in drei Komponenten- 

vektoren zerlegen lassen. Wir k6nnen daher schreiben 

(La) fotac+ |r -Par=[o oan 
e i T 

Wenn man die geschlossene Begrenzung auf einen im Innern des 

Gebiets 7’ gelegenen Aufpunkt zusammenzieht, so erhalt man durch einen 

unmittelbar verstandlichen Grenziibergang aus (la) die Differential- 

beziehung 
ie dv 2 22 fe Pee (2) f+27 P=, 

die sich in die drei Koordinatengleichungen zerlegen laBt 

k a J | 0 oz Ot xy <j eS tres dv, 

o\ Ox Oy Oz ice die 

(2a) hy + (Jae 4 Sou 4 Seu Sy 
@O \ whe Oy Oz dt’ 

ke + 1 (Ota , Otys sae __ 4%, 
ae (Ge Oy Oz} dt 

Die weitere Umformung geschieht mit Hilfe der Gleichungen (6) des § 2. 
Man erhalt z. B. fiir die x-Richtung 

Hl a ate + 2) 
=< be tu aat + oe + Ga) + gael ge + oe 4 8). 

Wenn man die Laplacesche Operation | 
o2 2 2 
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und die tibrigen bereits bekannten Vektoroperationen einfiihrt, so wird 

Fae eee Ne eee 
(a aes ie re ea 3 lat 2 i), 

und man erhalt daher aus (la) in vektorieller Schreibweise und mit Ein- 

fiihrung der Abkiirzung - =v die sogenannten Stokes-Navierschen 

Differentialgleichungen der Hydrodynamik 

ae eed l sep dv 

a : e cata! aa: 

die fiir inkompressible Fliissigkeiten die einfache Form annehmen 

; Le dv 
3 ea 74 bs _ a0 
( b) t 0 1D) ==) Ay = AG 

Eine weitere Umgestaltung der Bewegungsgleichung (3) geschieht 

durch Zerlegung der Beschleunigung in einen ,,stationaren‘‘ und_,,in- 

stationiren“ Bestandteil, sowie durch Einfithrung des Wirbelvektors. 

Der erste Bestandteil der Beschleunigung ist die partielle Ableitung 

nach der Zeit ohne Ortsanderung, wahrend der zweite Bestandteil die Ge- 

schwindigkeitsanderung bei einem Ortswechsel darstellt. Mit der bereits 

friiher benutzten Bezeichnung hat man also 

dy Ov 

(4) di at 
Fiir die Ausdriicke p+ » und Ap ergeben sich die sofort durch Aus- 

rechnung der Komponentenausdriicke zu bestatigenden Formeln 

+0-Fv=t——Pp+v4o+ SVE E -- 

i 
v-Vo= pO aL OUD D 

Ap =' ¥ -» —rotrotyp. 

wo z. B. ff - v den Gradienten der Geschwindigkeitsdivergenz bedeutet. 

Insbesondere zerlegt sich also die drtliche Geschwindigkeitsanderung in 

zwei Bestandteile, von denen der zweite rot pv xv=2w xv durch die 

Rotation bestimmt ist und der Coriolis-Beschleunigung in der Dynamik 

fester Korper entspricht. Damit erhalt dann unsere Bewegungsgleichung 

die Form 

(5) 

1 4 0 
(4a) f a 50?) +g 9F FV -v—vrobroty = 5; + rot v Xv. 

Bemerkenswert sind die folgenden Sonderfalle: 

a) Wenn die inkompressible Fliissigkeit (/°-»=0) wirbelfrei ist 

(rot p= 0), so geht die Gleichung (4) bzw. (4a) in die Kulersche Glei- 

chung fiir Potentialstrémungen iiber. Daraus folgt, daf die Bewegung 

der reibungsbehafteten inkompressiblen Fliissigkeit im allgemeinen nicht 

wirbelfrei sein wird. 
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b) Wenn bei der wirbelfreien Bewegung die Krafte ein Potential haben 

=—VQ, 

so wird sich auch, wie (4a) zeigt, die Geschwindigkeit von einem Potential 

ableiten lassen, entsprechend der Formel 

OP OP OP 
p=l Ov» = aaa? OCF aan ae) 

Umgekehrt mu8 die Strémung iiberall da wirbelfrei sein, wo ein Ge- 

schwindigkeitspotential existiert. Die Differentialgleichung 1aBt sich in 

diesem Fall unmittelbar integrieren, und wir erhalten 

p 1 OP 
(6) Qt, eg ciara Oe 

wo C im allgemeinen eine Funktion der Zeit ist. 

c) Bei stationirer wirbelfreier Str6mung ist 

a 

(7) Q+P +507 =6, 

d.h. die Gesamtenergie der Fliissigkeit eine im ganzen Gebiet gleich- 

bleibende Konstante (Satz von Bernoulli). 

d) Wenn man Reibungslosigkeit, aber nicht Wirbelfreiheit voraus- 

setzt, so erhalt man durch Integration von (3b) (mit 7 = 0) langs einer 

Stromlinie eine Gleichung, die formal mit der Bernoullischen Glei- 

chung (7) tibereinstimmt. Die Konstante C ist aber in diesem Fall keine 

absolute Feldkonstante, sondern nur lings einer Stromlinie dr xp=—0 

konstant, wahrend sie sich beim Ubergang zu einer anderen Stromlinie 

andert. 

2. Kine weitere bemerkenswerte und fiir die Anwendung wichtige Form 

der Bewegungsgleichung erhilt man durch Elimination des Druckes p. 

Zu diesem Zwecke bilden wir den Rotor jedes Gliedes der Gleichung (4a). 

Das wiirde in der Koordinatenschreibweise darauf hinauskommen, dak 

man die erste, auf die x-Richtung sich beziehende Gleichung nach y, die 

zweite, auf die y-Richtung sich beziehende nach 2 differenziert und die 
beiden so erhaltenen Gleichungen voneinander subtrahiert, usw. Da der 
Rotor eines Gradienten verschwindet, so bleibt eine Gleichung tibrig, die 
neben dem Rotor der Kraft nur Ausdriicke mit den Geschwindigkeits- 
und Wirbelvektoren enthilt. In der Vektordarstellung hat man mit 
v -v=0 und f -m=0 

1 ov Ow 
-rot 

1 
) aE One 9 rot (dv) = Fw , 

1 
rot (0 > my) = 9 rot (v X rotv)=w-/v—v-Yw. 
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Die beiden ersten Gleichungen ergeben sich unmittelbar aus dem 
Satz iiber die Vertauschbarkeit der Differentiationen. Die letzte Glei- 
chung kann ohne weiteres durch Ausrechnung der Komponentenglieder 
der beiden Seiten bestitigt werden. Man hat dann z. B. fiir die z-Rich- 
tung die Identitat 

Lore jpoaare ines 0 ’ Ov, Ov, Ov; 
RN eg et We dy Vy Wz VzWy) = COE a or ED ys SOLA pe 

Ow, Ow, Ow, 
Vx Aan Vy oy Vz re) * 

Mit diesen Formeln gehen die Bewegungsgleichungen tiber in 

i) 1 (8) p= w Pov Fwtydw +5 rot. 

Haben die Krafte ein Potential, so verschwindet rot f, und wir erhalten 

(6) 
(8 a) Saw Pov Fw+r4m, 

eine Gleichung, aus der sich die Helmholtzschen und verwandten 

Wirbelsaitze ableiten lassen?). 

Wenn eine Flissigkeitsbewegung vorliegt, die in allen Ebenen etwa 

parallel zur wy-Ebene den gleichen Verlauf zeigt, so wird w,=w,=0, 

v,=0; ferner verschwinden alle Ableitungen nach z. Dann verschwindet 

aber auch der Ausdruck w-/v, und es bleibt schlieSlich 

(8b) @ =ydw—v-Pw. 

Ist mw von Null verschieden, dann existiert kein Geschwindigkeits- 

potential; wohl aber diirfen wir die Existenz einer Stromfunktion Y an- 

nehmen, die das Stromfeld derart charakterisiert, daB die Geschwindig- 

keitskomponenten in Ubereinstimmung mit der Kontinuititsgleichung 

(V -v=0) sich als partielle Ableitungen in der Form 

(9) Va Oy? EES a 

darstellen lassen. Die Wirbelstarke wird dann 

A Ovy OU ee Ag 
2w = 2we= ae Oy A ae 

und die Funktion ¥Y geniigt der Differentialgleichung 

OL Oa LAV OL One) Oe 

dx oy Oy Ox Oc 
(10) yAAE = 

1) Vgl. Wilh. Miller, Mathematische Strémungslehre, Berlin 1928, S. 12, 

ferner. M. Lagally, a. a. O. S. 150. 
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die im stationaren Fall tibergeht in 

. OF A0F4E A¥FOAY 
VA Ads = = eS 

(10a) , = Ox Oy Oy Ox 

Diese Gleichung ist nicht mehr linear wie im Fall der Potential- 

stromung. Wenn also ¥, und Y, zwei Losungen sind, so genugt im 

allgemeinen die Summe Y,-+ YW der Gleichung nicht mehr. Das Super- 

positionsprinzip, das die Theorie der Potentialstromungen beherrscht und 

wesentlich zur Erleichterung und zur Vereinfachung der Lésungsmethoden 

beitriigt, verliert im Fall der zihen Stré6mung seine Giiltigkeit. Nur in 

besonderen Fallen, auf die wir noch zu sprechen kommen, kénnen parti- 

kulare Lésungen linear zusammengesetzt werden. 

§ 5. Ziihigkeit und Ahnlichkeitsgesetz. 

In den zuvor abgeleiteten Bewegungsgleichungen der zaihen Flissig- 

keit tritt die innere Reibung nur in der Verbindung = =y auf. Dieser 
( 

Quotient von Reibungskoeffizienten und Dichte wird als Zahigkeits- 

zahl oder kinematische Zahigkeit bezeichnet. Er ist diejenige 

GroBe, die die einzelne Flissigkeit in erster Linie hydrodynamisch 

charakterisiert. Ihre Dimension ist 

pl=| 
Da fiir die beiden technisch wichtigsten Fliissigkeiten, Wasser bzw. 

Luft, die Dichte o==1 bzw. o=1,293 -10-3 gs?cm-4 betragt, so haben 
Oo 

gs cm 

gs’?cm-+ 
=(em= or 

wir bei der Temperatur #0 

fir Wasser 7~ 0,018 cm?s—, 

fiir Luft yoo (0,145 em* s+ . 

Die Luft besitzt also, obwohl ihre Reibung bedeutend kleiner ist als 

die des Wassers, bei 0° eine etwa 8mal, bei 20° sogar eine etwa 14 mal so 

grofhe Zaihigkeit. Auf die experimentelle Bestimmung der Zahigkeitszahl, 

insbesondere die ziemlich empfindliche Abhiingigkeit von der Temperatur, 

werden wir spater ausfiihrlich zuriickkommen. 

Mier interessiert vor allem die meBtechnisch wichtige Frage, nach 
welchen Gesichtspunkten man zwei verschiedene, aber geometrisch ahn- 
liche Bewegungszustiinde etwa einen wirklichen Vorgang und eine 
modellartige, kleinere, eventuell mit einer anderen Fliissigkeit ausgefiihrte 
Nachbildung — miteinander vergleichen kann. Um das’zu entscheiden, 
wollen wir in der allgemeinen Bewegungsgleichung 

Ov Ag 1 ge = 
(1) be, J Dias HD rer) 
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zur Hinfiithrung dimensionsloser Groen die Substitution machen 

(2) r=lr, v=uv, t= ath 

wo / und w gewisse NormalgriéBen der Langenmessung und der Ge- 
schwindigkeit bedeuten. Ferner wollen wir zunichst von einer beson- 
deren eingepragten Kraft absehen. Dann ergibt sich aus (1) und (2) 

(3) aes uz 2 

wobei die Differentialoperationen sich jetzt auf die dimensionslosen 

GroBen beziehen. Fiihrt man weiter fiir den Druck die GréRe p ein durch 

oh = 
eam 

= Pune on, CE mb : 
so erhalt man nach Division mit ar die Gleichung 

Fo Oi Se ; = 

(3 b) ee 

die wir schleBlich als Dimensionsgleichung in der Form schreiben kénnen 

las 7 =0+ a], (4) ai = ibis 

wo R als Verhaltnis der Tragheitskrafte zu den Zahigkeitskraften gedeutet 

werden kann. 

Bei idealen Flissigkeiten (y=0) wird die Kraftwirkung, etwa die 

Resultierende der auf die Begrenzung ausgeiibten Druckkrafte, in der 

Form darstellbar sein 
P=cou'l’, 

wo c einen dimensionslosen Beiwert bezeichnet, und es ist zu erwarten, 

da® in geometrisch &hnlichen Fallen, die in allen Abmessungsverhalt- 

nissen und Winkeln der Begrenzungskérper tibereinstimmen, der Bei- 

wert unverindert bleibt. Diese einfache GesetzmaBigkeit trifft bei 

Beriicksichtigung der Zahigkeit nicht mehr zu. Vielmehr ist es, wie die 

Gleichung (4) zum Ausdruck bringt, fiir die mechanische Gleichwertig- 

keit (oder Ahnlichkeit) erforderlich, da& neben der geometrischen. Ahnlich- 
ul 

keit auch der Wert des Ausdrucks ==, der sogenannten Reynolds- 

schen Zahl, erhalten bleibt, d.h. die Gleichung 

V 

Wl — ttl 

bt ue 

Miiller, Theorie der ziihen Fliissigkeiten. a) 
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erfiillt ist, wenn 4, 1, 1 und Ws, le, v. entsprechende Werte von Ge- 

schwindigkeit, Lingenabmessung und Zahigkeit fiir beide Vergleichsfalle 

bezeichnen. Nur in solchen Fallen, die in der geometrischen und mecha- 

nischen Abnlichkeit iibereinstimmen, wird der Beiwert c der Kraft der- 

selbe bleiben. Allgemein kann man dagegen sagen, daB dieser Beiwert 

bei nur geometrischer Gleichwertigkeit eine Funktion der Reynolds- 

schen Zahl ® ist, so da P die Form annimmt 

P=cNRjewr. 

Statt der Reynoldsschen, die im technisch wichtigen Bereich sehr 

eroB ausfallt, verwendet man z. B. im Wasserbau nach Krey eine kleinere 
1 

Kennzahl, die aus ® dadurch erhalten wird, daB man an Stelle von ns 

cliie GréBe 12 

Ck = 108. » 
einfiihrt, die fiir mittlere, in der Natur vorkommende Temperaturen 

s 3 
etwa den Wert 1 annimmt?). 

Da sich ferner die Zahigkeit bei aerodynamischen Laboratoriums- 

versuchen nur wenig andert im Vergleich zu den Langen und Geschwin- 

digkeiten, verwendet man hier auch einen mit # bezeichneten Kenn- 

wert, der als Produkt aus Kérperlinge (in mm) und Geschwindigkeit 

(in m/s) definiert wird. 

Die Folgerungen aus dem Reynoldsschen Gesetz sind im allgemeinen 

durch die Erfahrung gut bestatigt worden. Wir werden spiater sehen, 

dal z. B. der Charakter gewisser StrOmungsvorginge bei einer bestimmten 

Geschwindigkeit sich fast unvermittelt andert, und daB dann auch die 

auftretenden Krafte emem anderen Gesetz folgen. Diese kritische Ge- 

schwindigkeit hat keine absolute Bedeutung. Denn wenn wir die Ab- 

messungen andern, also etwa die halben Dimensionen nehmen, so wird 

die kritische Geschwindigkeit bei gleichbleibender Zahigkeit doppelt so 

grof ausfallen, d.h. wir miissen tiberhaupt die Geschwindigkeiten ver- 
doppeln gegeniiber dem ersten Fall, um die entsprechenden, mechanisch 
gleichwertigen Verhiiltnisse zu erreichen. 

Kine Voraussetzung fiir diese Gesetze ist die Inkompressibilitat der 
Flissigkeit. So ist die Ubertragung irgendwelcher Versuchsergebnisse von 
Wasser auf Luft nur dann méglich, wenn man von der Veranderung der 
Dichte absehen darf. Das ist z.B. der Fall in der Flugtechnik, wo es 
sich meist um Geschwindigkeiten handelt, die unter der Schallgeschwindig- 

') Vgl. etwa Mitteilungen der PreuBischen Versuchsanstalt fiir Wasserbau 
und Schiffbau, Berlin, Heft 4, F. Eisner, Widerstandsmessungen an umstrémten 
Zylindern, Berlin 1929, §S. 1. 
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keit liegen. Bei Steigerung der Fluggeschwindigkeit kommt man dem 
kritischen Gebiet allerdings immer naher. Aus verschiedenen Versuchen 
scheint ferner hervorzugehen, daB eine Abweichung vom Reynoldsschen 
Gesetz bereits dann in die Erscheinung tritt, wenn die Geschwindigkeit 
gegen die Luft die Halfte der Schallgeschwindigkeit iibertrifft. Da nun 
die Forderung der mechanischen Ahnlichkeit eine Steigerung der Ge- 
schwindigkeit beim Modellversuch einschlieBt, so iibersieht man, daB der 
vollstiindigen versuchstechnischen Wiedergabe des wirklichen Vorganges 
manche Schranken gesetzt sind. 

Im Fall einer Dichteinderung ist das Ahnlichkeitsgesetz dahin ab- 

zuandern, dai’ noch der sogenannte Kompressionsmodul k = 0 oe in die 
Oo 

Formeln einzubeziehen ist, also die Vergleichbarkeit ahnlicher Vorgiinge 

noch an die Ubereinstimmung einer anderen dimensionslosen Zahl ge- 

bunden erscheint. Eine weitere Einschrankung gibt die Beschaffenheit 

der festen Wiinde, die sogenannte Rauhigkeit. Um eine entsprechende 

Erganzung des Ahnlichkeitsgesetzes vorzunehmen, wiirde eine besondere 

Definition der Rauhigkeit erforderlich sein. 

Die vorstehenden Betrachtungen sind unter der Voraussetzung an- 

gestellt, daB eine auBere Kraft, z. B. die Schwerkraft, nicht wesentlich 

ins Gewicht fallt. Sie sind insbesondere anwendbar auf (Schwimm-) 

Bewegungen innerhalb der Fliissigkeit. Bei Oberflachenerscheinungen 

dagegen, die in erster Linie von der Schwerkraft beherrscht werden, ist 

das Reynoldssche Gesetz nicht ohne weiteres anwendbar. Da namlich 

hier gegentiber dem KinfluB der Schwerkraft die Wirkung der Zahigkeits- 

krafte véllig zuriicktritt, so ist fiir den Ablauf der Oberflachenerschei- 

nungen (z. B. der Bewegung des Schiffes) nicht allein die Reynoldssche 

Zahl, sondern daneben auch das Verhaltnis der Schwerkraft zur Tragheits- 

kraft, die sogenannte Froudesche Zahl 

5—(2) 
makgebend!). Da es bei ungeiinderter Flissigkeit und Temperatur unmog- 

lich ist, eine Anordnung so geometrisch ahnlich zu veraindern, daB die ent- 

sprechenden Kennzahlen ® und & gleichzeitig erhalten bleiben, so gibt 

es bei gleichzeitigem und gleichwertigem Auftreten von Zahigkeits- und 

Schwerkraftswirkungen iiberhaupt keine mechanische Ahnlichkeit zwi- 

schen geometrisch ahnlichen Vorgiingen. Im folgenden werden wir im 

wesentlichen nur mit solchen Erscheinungen zu tun haben, die unter dem 

Gesichtspunkt des Reynoldsschen Gesetzes betrachtet werden k6nnen. 

1) Vgl. F. Eisner im Handbuch der Experimentalphysik IV, 2, Leipzig 1932. 
2% 
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§ 6. Reibungsarbeit und Dissipationsfunktion. 

Betrachten wir wieder ein beliebiges endliches Fliissigkeitsvolumen, 

so wird die auf die Zeiteinheit bezogene Arbeit der Oberflachenkratte 

n-Pdf bei einer Verschiebung des Teilchens durch das Flachenintegral 

dargestellt ‘ 

A= pn-P-vdf. 
Pp 

Fiihrt man das Integral mittels des Gaufschen Integralsatzes in ein 

Raumintegral tiber, so erhalt man 

A=|/ -(Pv)dv= {div(P-v)dr. 
T 7 

Bringen wir nun von dieser Arbeit den Betrag der mechanischen Arbeit 

A, in Abzug, die sich auf das Volumen als Ganzes bezieht und die 

kinetische Energie der enthaltenen Fliissigkeitsmasse vergroBert, so erhalt 

man in 

(1) Ay =/[F-(Pv)de—|v-F-Pde 
4 ie 

den Wert der auf 7 beztigichen Formiinderungsarbeit. Zieht man die 

Begrenzung auf den Aufpunkt zusammen, so ergibt sich die auf die 

Volumen- und Zeiteinheit bezogene Formianderungsarbeit an einer Stelle 

in der Form 

(la) E; = E — Em = div(Pp) — v-divP. 

Wie eine einfache Einsetzung der Koordinatenausdriicke ergibt, laBt 

sich #, in der Form darstellen 

OV» Ow Ov. 
E;=H—-—H AG ae “¥ Terres = 
4} m x Ox 5 wy Ox 3 UZ Ox 

ale Vig a Ov, Ovy Ov, 
Tx 9) : tyz a> + tangy + Oy gy + twa, 

4) ) ais ACL ) Vy _ Ov 
+ Taz ae ain vzR + Oz= 

(Lb) = Oxéx + Oy ey + Oz€&z + 2 Tyz) ye + 2 Caz Yue + 2 Cry 7/ay = as 1D), 

d.h. als doppeltskalares Produkt des Spannungs- und Defor- 
mationstensors!). Wenn man den Drucktensor durch den Defor- 
mationstensor ausdriickt, also die Gleichungen (6) § 3 benutzt, so wird 

Fl eee ars Np ReoPaN ae Bo 7) 2 94,2 rare ¢ EB; p-divy + A(divy)’ + 2uler + ey + ef + 272.4 272.4 2 Vel 
1+ 4 < = Sieht man nun von dem ersten Ausdruck, der sich auf die Kompression 

bzw. Expansion bezieht, ab, so berechnet sich die eigentliche Reibungs- 

1) Vgl. M. Lagally, aa. O. S. 220, 263. 
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arbeit, die gleichzeitig die erzeugte Warmemenge darstellt und nach Lord 
Rayleigh als Dissipationsfunktion bezeichnet wird, zu 

(2) Ey = A(divo)” + 2ulez + 6) + 62 +272, +2y2,+4 2 ele 

Die Spannungen ergeben sich daraus durch einfache Ableitungen. Wie 

man leicht nachweist, kann man diese Funktion in folgender Weise als 

Summe von sechs Quadraten darstellen 

[3 A+2u ve 1) div " 2 - | » see ie —— ee EMV ise e- (2a) E, 2 (ler +( i elt tz, 

und man sieht dann, da8 34+2u immer positiv oder Null sein muB, 

damit H'. einen reellen positiven Wert erhalt. 

Eine weitere Umgestaltung der Dissipationsfunktion ist besonders 

geeignet, um den Einflu®B der Grenzbedingungen und der in der Fliissig- 

keit vorhandenen Wirbel zu verfolgen. Wenn man nimlich die Identitat 

2udivy—2udivv=0 hinzufiigt und den Wirbelvektor einfiihrt, so er- 

gibt sich 

Ey, =(A + 2u)(divv)? + 40 w? —4 tt [ey &z + Ex éz+ Ex éy— (yz — Wh) — (Vine — Wy) 

Ovy Ov; = Ovy Ov; 
Oy Oz Oz Oy 

— (y2,—w2)] = (4 + 2) (div)? + 4? — 44 

Der Ausdruck in der Klammer kann durch Vermittlung der friiher 

gegebenen Formel 

5f v2 —v Xrotv =v: v 

entwickelt werden. Bilden wir namlich die Divergenz jeder Seite dieser 

Gleichung, so kommt wegen 

c ° a) L Ov, 0 yy ) ) div (0-0) =0-F divv + (divn)?—2(5" 5*— See + ..| 

die Beziehung 

Ovy Ov, Ody Ov, 

Oy Oz Oz Oy 

Daher erhalten wir fiir #,, die neue Form 

(2b) Br=A(divv)? + 4uw? —2uv-Ydivv+4u(sziv?-V -vXw), 

+--=}y-Vdivy +4 (divo)? —(44v?-F -v xX). 

die fiir inkompressible Fliissigkeit tibergeht in 

(3) Ey, = 4 [w?+ 4$0?—-F -vXw. 

Wenn wir mit dem Raumelement dr multiplizieren und iiber das 

gesamte von der Fliissigkeit eingenommene Gebiet integrieren, so ergibt 

sich nach Anwendung des GauBschen Integralsatzes 

(4) 1 = | B-dr = 4u [wedr —u[ ved f+ 4u/o x winds, 
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wobei unter n die von einem Punkt der Grenzflichen nach innen gezogene 

Normale zu verstehen ist. 

Aus der Gleichung (2) ergibt sich, daB #, nur verschwinden kann, 

wenn der Dilatationstensor verschwindet. In einer strémenden Fliissig- 

keit wird also nur dann keine Dissipation der Energie auftreten, wenn sie 

sich wie ein starrer Kérper bewegt, d. h. wenn die Bewegung sich, ledig- 

lich aus einer Translation und einer Rotation der Fliissigkeit als Ganzes 

zusammensetzt. Jede Zusammenziehung oder Ausdehnung und _ jede 

Winkelverzerrung ist dagegen mit einem mechanischen Energieverlust ver- 

bunden. Aus der Gleichung (4) laBt sich ferner der Einflu8 der Grenzen 

und der inneren Rotation auf die Energieverzehrung beurteilen. Im all- 

gemeinen kann man annehmen — auf die experimentelle Bestatigung 

werden wir spater noch eingehen —, dab die Fliissigkeit an festen Wanden 

haftet, daB also nicht nur die normale, sondern auch die tangentiale Kom- 

ponente der Strémungsgeschwindigkeit Null wird. Unter dieser Annahme 

verschwinden auch die beiden letzten Flachenintegrale der Gleichung. 

Ferner verschwindet das letzte Integral auch dann, wenn die Wirbelung 

Null ist oder wenn die Flachennormale in der den Geschwindigkeits- und 

Rotationsvektor enthaltenden Ebene gelegen ist. In einer wirbellosen 

inkompressiblen Flissigkeit, fiir die / die Form annimmt 

ne 
F=—-u [= v df, 

J on 

ist keine Energiedissipation méglich, wenn gleichzeitig die Strémung 

langs der festen Berandung haftet. Da aber in diesem Falle der Tensor D 

verschwindet, so ergibt sich, daf eine wirbellose, an feste Grenzen ge- 

bundene Bewegung einer zihen Fliissigkeit unméglich ist, da vielmehr 

jede zahe Strémung dieser Art eine bestimmte Wirbelverteilung auf- 

weisen mul. 

Wir denken uns nun zwei Fliissigkeitsbewegungen tiberlagert. Wenn v 
die Geschwindigkeit bedeutet, die den Grenzbedingungen geniigt, und vp’ 
die Geschwindigkeit einer beliebigen zusitzlichen Bewegung, die an den 
festen Grenzflachen verschwindet, dann haben wir fiir die elementare 
Dissipation der zusammengesetzten Stromung den Ausdruck 

(E's)y = (Ox + 2) (Ee + €4) ++ +2 (Tyz+ Tyz) (Yye + Yyz) + °° 

= y+ H+ 2[one, +--+ 2 TyzVye t+: | 

oder in vektorieller Form mit Einfithrung des Spannungstensors 

(Es) = H+ H+ 2[divPy' —v’-divP] =H+H.+217 .Py —v'/- Pig 

Wegen der friither aufgestellten Beziehung 

V-P=—Fp+udn 
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ergibt sich 

(E's)) = Ey + Hi, + 2[V -Pv' +0’ PF p—udn)]. 
Wenn man tiber den gesamten Fliissigkeitsbereich integriert und den 
Gaufschen Integralsatz anwendet, so erhalt man 

[@syde=(Brdv +[E,dv —2/Pv'ndj +2[v' UV p—udr)dr. 

Das Flachenintegral verschwindet nach der Voraussetzung. Nehmen 

wir ferner eine stationire langsame Strémung an, bei der die Beschleuni- 
dv ome 

gung 7, =v Fv vernachlassigt werden kann, und setzen tiberdies ein 

auBeres Kraftepotential Q voraus, so haben wir die Bewegungsgleichung 

Vp—utdv=—oF Q. 
Nun ist 

[oP Qdv= {PF -(o'Q)dc— [OF .v'de =—[v Qndf=0. 

Das letzte Raumintegral verschwindet also, und es bleibt 

[(Bsde = [Erde +fE,dr. 

Da _ beide Integrale wesentlich positiv sind, so sieht man, da8 die 

Dissipation der Energie fiir die zusammengesetzte Bewegung, die die- 

selben Geschwindigkeitswerte an der Begrenzung wie die wirkliche Be- 

wegeung hat, einen gréBeren Wert annimmt. Die langsame, unter dem 

EinfluB von Potentialkraften stehende Strémung ist also dadurch aus- 

gezeichnet, daB bei ihr die Dissipation kleiner ausfallt als bei 

irgendeiner anderen Bewegung mit derselben Geschwindig- 

keitsverteilung an den Grenzen. 

Im allgemeinen Fall, also bei nicht langsamer Bewegung, wird die 

Dissipation ein Minimum, wenn das Integral 

[v' dvdr 

verschwindet. Das tritt aber ein, wenn 

A V=T? WM, 

also Ap als Gradient einer eindeutigen Funktion @ von 2, y, z darstellbar 

ist. Dann geniigt der Wirbelvektor der Gleichung 

ZA Oe 

Bewegungen, welche dieser Bedingung geniigen, sind z. B. die stationare 

Strémung zwischen parallelen EKbenen und die Strémung zwischen ko- 

axialen Zylindern. Wir werden im speziellen Teil dieses Buches auf diese 

Falle ausftihrlich zuriickkommen. 
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§ 7. Impulssiitze fiir die allgemeine Fliissigkeit. 

1. Fiir die Ermittlung der Krafte, die eine irgendwie begrenzte stro- 

mende Fliissigkeit auf die GefaBwinde ausiibt, dienen die sogenannten 

Impulssitze, die im allgemeinen ohne weiteres von der Dynamik starrer 

Kérper tibernommen werden, aber streng genommen wegen der Wand- 

lung einiger Grundbegriffe, wie z. B. der Masse, eine besondere Ableitung 

erfordern!). 

Wir gehen zu dem Zweck aus von der allgemeinen Bewegungs- 

gleichung 

a Fo=ott+u4so—Sg (1) Ome COLD =e +ut0—h p 

und integrieren iiber das gesamte von der Fliissigkeit eingenommene 

Raumgebiet 7’, das etwa von festen Wanden G und von gewissen er- 

ganzenden ,,Kontroll-‘* oder Hilfsflachen H begrenzt sein moge. Man 

erhalt dann auf der linken Seite 

‘ dv man ce 
Ie ae ot =/og,dt+elv-/ pdt. 

r i ie 

Um das zweite Integral umzuformen, betrachten wir etwa den auf die 

v-Richtung bezogenen Ausdruck 

A) 4) Ay a; 2 Ov, Ov, Ov, 
(v-F 0)x = vx Resly Ub ae ma Ce ar <. 

Ox Oy Oz 

Wenn wir vf + v=v,- div p= 0 hinzufiigen, so ergibt sich 

Ov», Ov, Ov Ov, Ov;) ON x Gt 4 ( F “| 
“a . yD) he - es ye ees Deve = | y Oy =I Va Oy + | Vz ea + vz Ag 

By ate é 
= —— (V.,. + —— (9>,.93 Sa 
ap ) By Creu) + Be (vxVz) 

Jede Komponente der ,,stationaren‘‘ Beschleunigung laBt sich also 
als Divergenz eines aus den Produkten der Geschwindigkeitskomponenten 
gebildeten Vektors darstellen; die drei Vektoren charakterisieren einen 
besonderen symmetrischen Tensor, die ,,Dyade‘‘ oder das dyadische 
Produkt pv. Der Beschleunigungsvektor » - /v ist also gleichbedeutend 
mit der Divergenz /-vv dieser Dyade. Wenn wir nun den Gauf- 
schen Lehrsatz auf das Integral 

off -podtr 
. 

anwenden und die auBere Normale der begrenzenden Flachen F(G+H) 

') Vgl. etwa W. Miller, Mathematische Str6mungslehre, Berlin 1928, S. 22 ff. 
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mit 1 bezeichnen, so ergibt sich, wie man durch Ausrechnung einer 
Komponente sofort feststellt, die Beziehung 

(2) g[v-Vvdr=e[V -vvdr=g 
A 7 i T 

lundf ‘D= o|v -ondf. 
P 

Im Integral der rechten Seite von (1) ergibt der erste Ausdruck sofort die 
Resultierende der auf die Fliissigkeit wirkenden eingepriigten Krafte 

(3) otic = 
wahrend das auf den Druck sich beziehende Integral 

[7 pdr 

unmittelbar in ein Flachenintegral umgeformt werden kann. Bezeichnen 

wir dann mit J den Vektor des resultierenden Reaktionsdruckes, den die 

Flissigkeit auf die Grenzen ausiibt, so wird 

(4) [Ppdcr=|pndf=f. 
i F 

Aus dem zweiten Ausdruck erhalten wir 

(5) uj Av dt= uf Fodrt= [div (grad v) dr 

und nach dem Integralsatz von GauB 

(6) fh Pode=ulPondf=n] df. 

ip ye F 

Wenn n, die in die Fliissigkeit gehende innere Normale bedeutet, so 

sieht man, dafi das lings der festen Wande erstreckte Integral 

(7) —R= wf Sr dj=—uf 5? af 
Gr G 

unmittelbar die Summe der von den Wanden auf die Fliissigkeit aus- 

geiibten Reibungskriifte ergibt. Umgekehrt ist + die Resultierende der 

von der Fliissigkeit auf die Wiande ausgeiibten Reibungskrafte. Wenn die 

Flissigkeit unendlich ausgedehnt ist, also die Kontrollflachen im Unend- 

lichen liegen, wie etwa eine Kugelflache mit unendlich groBem Radius, so 

verschwindet das tiber die Flachen K erstreckte Integral, wenn p wie eine 
it j : ; é 

Potenz von — verschwindet oder das Feld im Unendlichen homogen ist. 
a 

Auch sonst kommen bei kleiner Reibung wesentlich nur die Reibungs- 

krifte lings der Flachen G in Betracht, da nur hier der Geschwindigkeits- 

gradient ce von nennenswerter GroBenordnung ist. Wir kénnen also 
; 

schreiben 
a; 

(8) palende + eondf-v=R—-(R+P). 
7 iM 
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Der erste Ausdruck auf der linken Seite ist die zeitliche Anderung 

des im Gebiet enthaltenen Impulses (die bei stationarer Strémung ver- 

schwindet); der zweite Ausdruck stellt den Impulstransport durch die 

Kontrollflachen dar, weil der Ausdruck lings der festen Grenzen (v, = 0) 

verschwindet, oder den UberschuB des durch die Flichen austretenden 

Impulses gegenitiber dem eintretenden. Wenn die eingepriagte Kraft ver- 

schwindet, so haben wir demnach den Satz: 

Die substanzielle Impulsanderung, die sichaus der lokalen 

und der konvektiven Anderung oder dem Impulstransport zu- 

sammensetzt,ist gleich dem negativen Wert der vektoriellen 

Summe der auf die Wainde ausgeiibten Reaktionsdrucke und 

Reibungskrafte. Wir sehen also, daB der Impulssatz fiir zahe Flissig- 

keiten ebenso gilt wie fiir reibungslose Flissigkeiten. 

2. Zur Bestimmung der Lage der Krafte laBt sich ein entsprechender 

Satz fiir die Impulsmomente in bezug auf irgendeinen festen Punkt auf- 

stellen. Es wird im wesentlichen darauf ankommen, das Moment der 

Massenbeschleunigung 

3=31+22.=0/rX dr 

i 

umzuformen. Fiir den ersten Teil des Integrals erhalt man 

ae 
(> Cc ’ va _ Si = Qa; /tXvdr, 

am 
fiir den zweiten Teil 

Se=o/(tX/-vv)dr. 
T 

Der Klammerausdruck unter dem Integralzeichen lift sich wieder als 
Divergenz darstellen, wie man etwa durch direkte Ausrechnung der 
«x-Komponente feststellt. Es ist niimlich 

; ee @ 6 6) On. fa) | 
Y¥ Ox v2 dy Vy Vz + oe — ap (vx Vz = dy vy = Bz Vur2) 

(6) (a) e (a) 
= on [v2 (yv2 => ZVy)| == dy [vy (y vz 18 Vy) | aie az vey Vz — ZVu)|. 

In vektorieller Schreibweise hat man also 

(9) tx Peppa ere pen. 
Phe ; . Das Integral 3, ergibt daher nach dem GauBschen Satz 

2 e/vndf “eau 
F 
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a! s) . . 

Auf der rechten Seite erhalten wir in derselben Weise wie oben das 
Moment der Krafte. Im ganzen kénnen wir daher schreiben 

(10) o5,[tXvde+efondf-rxv=rX R—rX RFP. 
7 F 

Das Moment der substantiellen Impulsinderung oder der 
Summe aus der lokalen und der konvektiven Impulsinderung 
in der Zeiteinheit ist demnach gleich dem Moment der auf 

die Flissigkeit wirkenden Kriafte oder bei Fehlen einer ein- 

gepragten Kraft gleich dem negativen Moment der auf die 

Grenzen ausgetibten Reaktionsdrucke und Reibungskrifte. 

In dem Fall, da®B in der Fliissigkeit singulare Stellen vorhanden 

sind, sind die Impulsbetrage entsprechend zu modifizieren bzw. zu er- 

ganzen, worauf wir aber nicht eingehen wollen. 

§ 8. Transformation auf Zylinder- und Kugelkoordinaten. 

1. Allgemeine Zylinderkoordinaten. Die in den vorhergehen- 

den Abschnitten abgeleiteten hydrodynamischen Grundgleichungen, die 

fiir rechtwinklige Koordinaten entweder schon gegeben sind oder doch 

sofort angeschrieben werden kénnen, wollen wir nun auf orthogonale 

krummlinige, insbesondere auf Zylinderkoordinaten (r, gy, z), tibertragen, 

um die Formeln fiir spatere Anwendung sofort zur Hand zu haben. 

Dabei werden wir die Rechnungen, die im ganzen elementarer Natur 

sind, nach Moglichkeit abkiirzen. 

Um zunachst den Verzerrungstensor nach den Richtungen 7, p, 2 zu 

zerlegen, haben wir die relative Verschiebung bzw. Verschiebungs- 

geschwindigkeit zweier Nachbarteilchen der Fliissigkeit zu ermitteln. 

Da die Richtungen von v, und v, nicht mehr unverandert bleiben, so 

haben wir bei der Bildung der Geschwindigkeitsiinderung bzw. der Be- 

schleunigung gewisse Zusatzglieder zu berticksichtigen, die der Drehung 

bzw. der Anderung des Winkels w entsprechen. Bedeutet YU einen all- 

gemeinen Vektor, so setzt sich die totale Anderung zusammen aus einer 

Anderung in der Richtung von und einer Drehung des Vektors. Wir 

kénnen diesen Satz durch die allgeemeine Formel ausdriicken 

(1) §U=edA+ dpXX, 3 

wenn e =4 den Einheitsvektor in der Richtung % und dg=qadt den 

Vektor der Drehbewegung bedeutet. Daraus folgt z. B., daB die Anderung 

der Radialgeschwindigkeit v, auf dem Wege roy sich zusammensetzt aus 

den Vektoren a in Richtung und dem Vektor v, 69 =— rdg in der 
GP 
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dazu senkrechten Richtung der Geschwindigkeit v,. Auf demselben Wege 

i ; ° * . Ove 
aindert sich die Geschwindigkeit v, um den Vektor rie) und den Vektor 

v, Og, von denen der erste die Richtung vy , der zweite die Richtung des 

negativen Radiusvektors 7 hat. Wir gewinnen daraus folgende Formeln 

fiir die Anderungen der Geschwindigkeiten v, , vy , Vz: 

Ov, Ov, vr a 
Ov args ) (ae nop +3, 02, 

‘ Ovy V% | Ove es 2 arse (22 4 20) 4 28s, 
Ov, Ov, 6 ony. 

OE ed) sepa cory Oz 

Daraus folet, daB das Quadrat des Linienelementes zweier Nachbar- 

punkte nach der Deformation in der Zeit dt die GréBe hat 

di? = (br + durdt)? + (rd p + dvg dt)? + (Oz + Ov dt)? 

(3) = dl? + 2dtle (Or)? + ég(rd gy)? + &2(0z)? + yrg(rdr dg) 

+ yrz(Or Oz) + Yzy- (rd dz). 

Die Koeffizienten in dem Ausdruck d/2—d/? geben dann ohne weiteres 

die Komponenten des Verzerrungstensors. Wir erhalten 

 0u, 2, 1 Ov,. vy Ove =a Lig = aig ee ae 01 r Op 7 Or 
4 oe Li Ge ee a Ovp Ov; 
( ) SS Eel ma) ae ? 27 G2 a aay sia ye r Op r Oz rOg 

GB ar Q(t a i oa 

und daraus dann die Kontinuitaitsgleichung 

2 O(rv, Ow O(rv, (5) (er apt 6) =r Fy =o 4 Se 4 OM) og 
Or Og Oz 

Ebenso leitet man nach der Vorschrift des § 2 fiir die Wirbelkomponenten 
ohne Schwierigkeit die Ausdriicke ab 

_ 1 fdv, Od(rv@) 1 /Ov, dv,) 
Dia \ a nae 5); Wy=—|a-— =" A (6) 2r\Og Oz 2 \ dz Or 

ie O(rvg) _ Ov, ti, = eae 
“r\ CO,» CY, 

Wenn wir die Ausdriicke (2) durch das Zeitelement dt dividieren und 
pt : oe : ‘ ony) die partiellen Differentiale en * usw. hinzufii pe ifferentialquotienten a; USW- hinzufiigen, so erhalten 

wir die Beschleunigungskomponenten. Es mége bemerkt werden, daB 
. . . . 

. 
; wir die Beschleunigungsgréen auch ohne weiteres durch Benutzung der 

aus der Dynamik bekannten Zusatzbeschleunigungen gewinnen kénnen 
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So ergibt sich fiir die Beschleunigung 6, bei Hinzufiigen der Zentripetal- 
beschleunigung 

72 
Vp O U;. Ov, | OV, ve Ov 
jo OE 

by = Ur — ae + + Ur 

Ferner ist das auf den Anfangspunkt bezogene Moment der Beschleu- 
nigung b, gleich der Anderungsgeschwindigkeit des Impulsmomentes. 

In dem entsprechenden Ausdruck 

d Ov Ove rby = 7400-9) =7(aF +E (a) V_p to) Vp 

Vr roy Vp Uz) + UrV@, Or Oz 

der mit dem aus (2) sich ergebenden iibereinstimmt, tritt dann auch 

nach entsprechender Umformung die bekannte Coriolis- Beschleunigung 

2v, “2 auf. 

Um die vollstandigen Bewegungsgleichungen darzustellen, bedarf es 

noch der Entwicklung der Ausdriicke Av,, Avy. 

Wenn wir in (5) 

On 0” Op 
i) —— == =) — =pfY(D 

Ur Or? Ve—p rog’ Vz 62” Dv VE 

einsetzen, so ergibt sich eine skalare Funktion 

OP 10®@ Ih oPap 2a 

(7) dN Or? anon ist dg? | Oz 

Fir ® kénnen wir wegen der Unveranderlichkeit der Richtung ohne 

weiteres v, einsetzen. Dagegen erhalten wir durch zweimalige Anwendung 

der Formel (1) bzw. der daraus durch Division durch den Weg réq@ ab- 

geleiteten Formel, am einfachsten auf geometrischem Wege, 

By. Mie, AL GPa Br 2 Ovy 

oie oe a r as ie oat a ip ag 

Ory  lLdve wy , LOPrvp | 20% | Puy 

Or? Pp OW jo 2 Wa TE OW 02 

(8) 
| Avg = 

Die Bewegungsgleichungen werden dann 

| Me a7 ee DA 
Q or 

1 Op oe 
(9) ) Ay 0 Gee Ft in 

| Oy fn = 

0 02 

2. Der achsensymmetrische Fall. Wenn wir kreissymmetrische 

Verhialtnisse um die z-Achse haben, so verschwindet v, und alle Ablei- 

tungen nach g. Es bleiben dann die beiden Bewegungsgleichungen fiir 
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die z- und die r-Richtung iibrig. Wenn man ein Potential Q fiir die 

auBeren Krafte annimmt und 

-(a+?\=¢ 
setzt, so erhalt man 

z r (11) Oz ' \ér? ' r Or * Oz, 
OQ O20. MCh (eee Ur Ov , Ov, Ov, 

or 1 ee Lee or gee =e) = ot +s Oz Aes Or 

Elimination von Q fiihrt mit der Substitution 

Oo? ie oO? 

ES oes a per) or 

zu der Gleichung 

0 (Ov, Ov, Ov, 0/0, , 0%, Ov. 
oS | af tag Fae) salar bora + OG. | 

Vv, a) 

=vl5 [4 7? kOe 

die durch Benutzung der Kontinuitaétsgleichung vereinfacht werden kann. 

Die einzig méglichen Wirbellinien sind Kreise, die die z-Achse zur gemein- 

samen Symmetrieachse haben. Setzt man die Wirbelstirke 

Wy = WwW, 
so wird 

(12 a) 

Fiihren wir die Stromfunktion Y% mit 

(13) jae 
r Or’ 

0 # 
Ur SS — —— 

Oz 

ein, und bezeichnen wir zur Abkiirzung mit D die Operation 

oF lo Oo? 

D= 5, pono: 

so wird zunachst 

(14) Daye oe 

und die Gleichung (12) baw. (12a) laBt sich dann bei Benutzung der Kon- 
tinuititsbeziehungen auf die Form bringen 

0 0 a) 2 v, 
(18) (3 ala Ors =F Ora, “ ”D)D = (Q), 
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Fiir manche Anwendungen ist es zweckmaBig, Kugelkoordinaten R 
und # einzufiihren, die mit z und r durch die Beziehungen 

E— COS ser —— Sino 

zusammenhangen. Auf Grund der zu (2) analogen Transformations- 
gleichungen findet man dann 

a : i 04 OY” 1 OY 
OR = vzcos v + vysin } = —— Ba eqing)|) === = 

16) e + : Rsin# | or cosy Oz em 9) R2 sin Ov y 

V9 = vr cos — vzsin} = — = es 
: Oe : Rsiné OR 

Ferner ergibt sich durch elementare Rechnung 

v, 1 sind & CF 
> = fans e a9 cost ace 

Pe Sree tes 1 (ovo ova 
“Oz "Or raat ae OR OR 35) 

pee ee sae) 
0 R2 R2 Ot sin t+ 0% 

Wir erhalten daher fiir die Stromfunktion WY die Differentialgleichung 

(ont) (2 Doug o OR 8 2 (cos 9% v sind A 
(17) \d¢ ° R?sing\OGOR OR oy) iyPigin 2-9) eum R o# 

ee png Of 2 0 \ loee sain 0 1 04 

=: la os Rk? 0% (aes | Be R? 0¢ (a3 } =0, 

auf die wir bei einer spateren Gelegenheit ausftthrlich zuriickkommen 

werden. 

ZWEITES KAPITEL. 

Stationiire Laminarstrémung zwischen ebenen 
Wiinden. 

§ 9. Lineare Strémung zwischen ebenen Winden. 

Nachdem wir die allgemeinen Ansitze der Dynamik zaher Fliissig- 

keiten entwickelt und die leitenden physikalischen Gesichtspunkte 

kennengelernt haben, wollen wir eine Ubersicht iiber die wichtigsten 

Integrale und Integrationsmethoden geben und zunachst mit der Be- 

trachtung einiger einfacher Bewegungsformen beginnen, deren Verlaut 

-nur durch eine einzige Koordinate charakterisiert wird. Haben wir z. B. 

eine laminare Bewegung der Fliissigkeit, die in allen Ebenen senkrecht 

zur z-Achse gleichmaBig verlauft und parallel zur x-Achse gerichtet ist, 

so kénnen wir annehmen, da8B die Geschwindigkeit v,, nur von z abhangt, 
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wahrend y, und v. verschwinden. Eine solche Bewegung kann z. B. als 

erzeugt paumentet werden von einer festen Ebene, etwa z=0, die sich in 

der w-Richtung gleichmaBig in sich selbst verschiebt und die an ihrer 

Oberfliche haftende Fliissigkeit mitfiihrt. Das System der Bewegungs- 

gleichungen (3) baw. (4) des § 4 geht tiber in 

, Op Pv, Ov, Op Op 8 

(1) =o, | las = os? 9 ty mee ae 
Wegen der GleichmaBigkeit aller Verhaltnisse in der x-Richtung kann 

ae —0, also pals konstant angesehen werden. Ist die Strémung auBer- 
aw 

dem stationir, so reduziert sich (1) mit vz; =v auf 

dv 

woraus sich die einfache Losung 

(3) Vv =U + az 

ergibt. Die Geschwindigkeit der Strémung nimmt also linear mit der 

Entfernung von der mit der Geschwindigkeit uw) bewegten Ebene z=0 

u. Da die Geschwindigkeit v= oo nicht zulassig ist, so ist die einzig még- 

liche Bewegung der unendlich ausgedehnten Fliissigkeit die gleichf6rmige 

Translation mit der Geschwindigkeit wo (a0). Man kann also im be- 

sonderen nicht voraussetzen, dafi die Flissigkeit im Unendlichen ruht 

und sich im tibrigen stationar bewegt. 

Wenn wir annehmen, dal der feste Boden, an dem die Fliissigkeit 

haftet, durch z—0 dargestellt wird und die bewegungserzeugende Ebene 

den Abstand z=h vom Boden hat, so wird 

in Le 
(4) Va = h 

Die langs der Oberfliche z=h bewegte Ebene erfihrt daher einen 

Widerstand, der pro Flaicheneinheit den Wert hat 

U kK 0 5) Caz = = [l=—- ( mu ~ % 

Da das Geschwindigkeitsgefiille von der bewegten Wand aus mit dem 
Abstande abnimmt, so ergibt sich, wie auch die Formel zum Ausdruck 
bringt, daB der Widerstand umgekehrt proportional mit dem Abstand 
der beiden Ebenen z=0 und z=A ist. 

Die Gleichung (4) findet sich tibrigens angeniihert bei der stationiiren 
Meeresstr6mung realisiert, die wahrscheinlich von der Luftstrémung 
durch Vermittlung der Reibung zwischen Luft und Wasser verursacht 
wird. Sie bedarf allerdings, um den wirklichen Verhiltnissen gerecht zu 
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werden, noch einer wesentlichen Erweiterung fiir den instationiren Fall, 
den wir spaiter ausfiihrlich besprechen werden. 

2. Wenn die Flissigkeitsbewegung zwischen parallelen Wanden unter 

einem bestimmten konstanten Druckgefalle ce steht, so erhalten wir 

fiir den stationiren Fall die Gleichung 

dv Op 
(6) Ue rea crear | 

Unter den gegebenen Voraussetzungen ergibt sich dann fiir v eine qua- 

dratische Abhingigkeit von der Koordinate z in der Form 

= Op 2 
Ho=-AtBe+a 5, 

wobei die Konstanten A und B verschiedenen Grenzbedingungen an- 

gepaBt werden konnen. 

a) Wenn z. B. die Wand z=AfA die Geschwindigkeit wv» hat, wahrend 

fiir z=0 die Geschwindigkeit Null ist, 

so haben wir 

Wee uy ih Op 
A=0; B= h aes 

Jes 7 Af / VA / a 

zu wahlen, also Abb. 5. Geschwindigkeitsprofil bei 
Ue Opz(h—2) einer lLaminarstromung zwischen 

agi Cae wae parallelen Ebenen. 

Der Gesamtflu8 durch eine zur Stromrichtung senkrechte Ebene wird 

daher 
h 

é h? Op 
mat at mae ee 

Q=[vdz=jhu 12u 0x’ 
0 

woraus als mittlere Geschwindigkeit sich der Wert ergibt 

h 3 he 

1 =e Dee 

aa OG ae er, We a 
0 

Diese Formel kann auch dann als erste Naherung angewendet werden, 

wenn die Hohe # verinderlich ist, vorausgesetzt, daB a klein bleibt; 

ferner auch bei schwach gekriimmten Grenzflachen. 

Die sich bewegende Grenzflaiche erfihrt einen Widerstand, der pro 

Flacheneinheit den Wert hat 

Miiller, Theorie der zihen Fliissigkeiten. 3 
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Wenn der Druck mit der Richtung der Fiihrungsgeschwindigkeit ab- 

fallt, also negativ ist, so verschwindet der Reibungswiderstand fir 
y x 

_ Oph’ 

Fae 2u ; 

b) Wenn die Flissigkeitsform von zwei ruhenden parallelen Wanden 

z=-th eingeschlossen wird, so gibt die Bedingung des Haftens fiir die 

Integrationskonstanten die Werte 

v=—5— (2), 
ferner der Gesamtflu8 

as 9 
= = Solace 

Q=|ovdz i 3u h |Oa| 
=i) 

und die mittlere Geschwindigkeit 
h? | Op 

3u | Oa} : 

Das Druckgefalle ist also der mittleren Geschwindigkeit direkt 

Um = 

und dem Quadrat des Plattenabstandes indirekt proportional. 

c) Haben die Wande auberdem eine natiirliche Neigung gegen die 

Horizontale, so gilt anstatt (6) die Gleichung 

; Op ay 
a UY Sa rested le pra | 

Dieser Fall erledigt sich also dadurch, da an Stelle von a der Aus- 
we 

Op ; : b, 2 : 
druck i y sina einzufiithren ist. Wenn p konstant ist, haben wir fiir 

x 

eine zwischen zwei geneigten parallelen Wanden z=-+h abflieBende 
Fliissigkeitsschicht 

v= - (h? — 2”) sina. 
“a 

Die Geschwindigkeit in der Mittelschicht z—0 ist 

g 2 9 

Y = 9, sina- lo? 
2 

Diese Schicht kann als freie Oberfliche der halben Flissigkeitsschicht 
dv : : | de 0 die Reibung 

verschwindet. Dann erhalten wir die mittlere Geschwindigkeit 
h 

von der Dicke h angesehen werden, da in ihr wegen 

ae eee ight ana 
Um = on [ve —2*)sin@ d2— 3 g sina - h?. 

0 
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Bei einer Breite 6 der Schicht haben wir fiir die sekundlich abflieBende 
Menge lg 

Q=, sina -b-h' 

und daraus 
1 

a 7 . 3 
je = 3 sina bh . 

J 

Q 
Die Zahigkeit der Flissigkeit erweist sichalsoals proportional 
der dritten Potenz der Dicke und umgekehrt proportional der 
Menge Q. Auf Grund dieser Bezichung kann man die Zahigkeit » be- 
rechnen, wenn man durch Messung die Neigung a und die Dicke h 

bestimmt hat. Es zeigt sich dabei, daB die Reynoldssche Zahl Dmith 

unterhalb des Grenzwertes ,, 330 liegen muB. In diesem laminaren 
Gebiet, in dem also eine merkliche Schichtenstrémung stattfindet, bleibt » 
fiir die verschiedenen Werte 

von  konstant. Wenn  da- 

gegen den Wert 330 tibersteigt, v 

so wachst die kinematische 

Zahigkeit etwa linear mit R 

(vgl. Abb. 6). Man muB ferner 

bei den Versuchen in Riick- 

sicht ziehen, da die Kapillar- 

krafte einen nicht unwesent- ce a a 

lichen EinfluB8 austiben, der Oe Aue wee be ; 

Ree oercues Tussle: Abb. 6. Zahbigkeit (in bhangigiett von\ der 

keiten verschieden ausfallt und Reynoldsschen Zahl bei linearer Strémung. 

sich besonders darin zeigt, daB 

die Fliissigkeitsschicht sich in der Nahe der Grenzen verengt. Die Kapil- 

laritat diirfte auch der Grund dafiir sein, daB der kritische Grenzwert 

fiir R, fiir verschiedene Fliissigkeiten verschieden ausfallt: Wahrend der 

Wert 330 fiir Wasser gilt, liegt der Wert fiir eine 12%ige Zuckerlésung 

bei 280, fiir eine 25% ige Zuckerlésung etwa bei 250. Man kann also die 

Vorginge nicht exakt miteinander vergleichen, wenn man mit verschie- 

denen Fliissigkeiten arbeitet. 

§ 10. Bewegung einer ebenen Tragfliiche auf einer 

Fliissigkeitsschicht. 

Wichtig fiir die spater zu erwihnende Theorie der Schmiermittel- 

reibung ist der von Lord Rayleigh’) behandelte Fall einer ebenen 

1) Philos. Magaz. 35 (1918), 8S. 1. Vgl. auch A. Sommerfeld, Zeitschr. f. techn. 

Physik, 2. Bd., 1921, S. 91f. ug 



36 Stationire Laminarstrémung zwischen ebenen Wanden. 

unendlich langen Platte (Tragfliche), die auf einer diinnen Schmier- 

schicht bewegt wird (Abb.7). Fiir den Ansatz kommt es auf dasselbe 

hinaus, wenn wir die Tragflache 

z als ruhend voraussetzen und an- 

nehmen, da die ebene Unterlage 

mit einer Geschwindigkeit w» in 

ihrer Richtung  fortschreitet. 

Nehmen wir an, dal die Flache 

von «=0 bisx=areicht, und dab 

Abb. 7. Tragflache auf einer Fliissigkeits- die Dicke der Schicht sich linear 

schieht. iindert im Sinne der Gleichung 

— hy -- pau (he —= hy = Pa) > 

hz hy 5g 
a 

so kénnen wir die Formeln fiir den von a unabhangigen FluB und die 

Geschwindigkeit v in Abhangigkeit von der Koordinate z senkrecht zur 

Unterlage anwenden 

Ws z(h—2) dp. 7 h? dp 

(1) DO bee OIE LT. Cg ea tet 

Wir erhalten dann 

dp _ es 
(2) as 3 (hUo —2Q). 

Wenn wir nach x zwischen den Grenzen x=0, h=h,, p=0 und «=a, 

h=hs,, p=0 integrieren, so ergibt sich 

6u h, +h, 3 O=a7 5 |mo— O55 (3) Oc gy eS 
woraus mit der Abktirzung 

APR ae 4 u, h 
aig we em die Beziehung Q = oa 

folgt, mit der gemiB (2) 

dp 6uu d ap __ Sury oy ; Dian Ou Up 

dx hs (h — ho); aif Bh (1 — ho) 

sich ergibt oder nach Integration unter Elimination von hy) und pas- 
sender Wahl der Integrationskonstanten 

Buu Uy a h —] - (4) a (h, —h) al 
h?—h he 

Man sieht daraus, dafi der Abstand hk der Ebenen in der Be- 
wegungsrichtung sich verkleinern mu, damit p positiv wird 

s - . i da8 ferner der Druck bei veranderlicher Schmierschicht nicht 
mehr konstant ausfallt, sondern zwischen den beiden End- 
werten p=0 (fiir x=ound «#=a) ein Maximum hat, das der Stelle 
h=hy entspricht. 
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Fiir den Gesamtdruck, den die Flache zu tragen vermag, erhalten 

wir mit ban 

6buu 

(k-1 Ta (lex — Pa) ; 

wahrend der Reibungswiderstand den Wert annimmt 

(5) Pi=|pdx= 
; 

2uua 
(6) Pema fu Gh dem = ie (21g k +e (k— uy, 

Teas 

Es ergibt sich daraus das bemerkenswerte Resultat, daB P ein Maxi- 
sa On 

mum erreicht fir -* = EC anmnward 
be 

uUa 

hy 

Mit w=0,03, wu=1 m/s, h;=0,2 mm, a=10 cm ergibt sich als GroBe der 

tragbaren Last pro Quadratzentimeter 

Pi=0,16 u we P= 0154 
9 

= =1,2 kg/cm?. 

Eine praktisch wichtige Anwendung dieses Falles der Tragfliche auf 

der zahen Fliissigkeit werden wir spater in der Theorie der (Sommer- 

feldschen) Zapfenreibung besprechen. 

§ 11. Ebene Strémung dinner Fliissigkeitsschichten. 

1. Wir haben oben die geradlinige Str6mung in einer von zwei Parallel- 

ebenen z=-+h/ begrenzten Flissigkeitsschicht betrachtet und gefunden, 

daB die mittlere Stromgeschwindigkeit dem Druckgefalle in der Stré- 

mungsrichtung proportional ist. Wenn die Flissigkeit nach zwei Rich- 

tungen zwischen zwei parallelen Horizontalebenen mit geringem Abstand 

flieBt, so haben wir das Gleichungssystem 

Ov 0 CO Dim Op) OF 

(l) is aa = Bz? ite re = 3, rate 

wenn wir unter Voraussetzung kleiner Geschwindigkeiten die Differential - 

quotienten von v, und v, nach x und y gegeniiber den Anderungen 

mit z vernachlissigen und iiberdies v, gleich Null setzen. Diese Grund- 

gleichungen gelten auch dann, wenn die Strémung infolge von zylin- 

drischen, in das Stromfeld hineingestellten Hindernissen (von der Héhe 

2h) einen gekriimmten Verlauf hat, jedenfalls unter der Voraussetzung, 

daB die Abweichung der Stromlinien von einer Geraden nicht allzu 

eroB wird. 
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Aus (1) ergibt sich, daB fiir den Druck die Beziehung 

p=yet fe y) 

besteht, derzufolge die beiden Ableitungen des Druckes nach # und y 

von z unabhingig, also bei der Integration als Konstante anzusehen sind. 

Dann erhalten wir bei Haftung an den Wanden die Integrale 

ao P els 
Cag Ox 2pu 

1 Op 

2) 
he) 0 Qu oy (heals 

aus denen sich die mittleren Geschwindigkeiten zu 

: Op h? Op 
(3) (vz)m = — Ag 3a? (vy)m = — oy 3 

oder 

0 h2 a) 2 
(3.a) (vz)m = Bip |- 3u p(x, n) 5 (vy)m = oy |- Fi p(x, y) 

berechnen. Die Mittelwerte der Geschwindigkeiten kénnen daher als par- 

tielle Ableitungen einer Potentialfunktion 
2 

Oe 7, Pe y) 

dargestellt werden, so daB sich also die zihe StrOmung einer diinnen, 

von zwei parallelen (Glas-)Wanden eingeschlossenen Flissigkeitsschicht 

in ihrem mittleren Geschwindigkeitsverlauf wie eine ideale wirbelfreie 

Stromung verhalt. Die Kurven gleichen Druckes fallen daher mit den 

Potentiallinien der idealen Vergleichsstr6mung zusammen. Diese Satze 

verlieren ihre Giiltigkeit in der unmittelbaren Umgebung der vertikalen 

zylindrischen Querwande, da die Geschwindigkeit hier fiir jedes z ver- 

schwindet. 

Hele-Shaw?) hat eine urspriinglich parallele, durch ein irgendwie 

(kreisfOrmig, geradlinig und schiffskérperartig) profiliertes Hindernis ge- 

stérte Stromung dadurch sichtbar gemacht, dal} er gefirbte Fliissigkeits- 

faden aus mehreren iquidistanten Kanilchen in den Strom einfiihrte. 
Da bei der kleinen Geschwindigkeit die Faden durch das ganze Strom- 
gebiet sich getrennt erhalten, so gewinnt man durch ihren verinderlichen 
Abstand ein deutliches Bild von dem Geschwindigkeitsverlauf in der 
Umgebung des Hindernisses, der auch im Lichtbild festgehalten werden 
kann. 

1) Hele-Shaw, Investigation of the nature of surface resistance of water 
and of stream-line motion under certain experimental conditions, Inst. of Nav. 
Arch. 40, 2, 1898; ferner The Motion of a Perfect Liquid. Proc. Roy. Soc. 16, 
49, 1899. 



§ 11. Ebene Strémung diinner Fliissigkeitsschichten. 39 

2. Als einen weiteren Fall betrachten wir eine zwischen zwei verti. 
kalen Wanden flieBende Fliissigkeitsschicht, die mit einem groBeren 
Gefa in Verbindung steht. Wenn die Fliissigkeit im Gefa8& die Héhe H 
einnimmt und die Schicht in 

der horizontalen Richtung die oe 
Lange / hat (vgl. Abb. 8), so | 

| 
ff 

4 

kénnen wir uns die Aufgabe 

stellen, den Verlauf der Strom- 

linien, also insbesondere die 

Gestalt der freien Oberfliche, 

zu bestimmen. Beriicksichtigt i Z = 

man die Schwerkraft und das J 

Druckgefalle, so haben wir die 

——— 

Abb. 8. Bewegung einer diinnen Fliissigkeits- 
hennt ee : liiche. 

motto ee danitan schicht mit freier Oberflache 

i O Op 2 v, 

(1) da“ Oge? dy Syl Oz 

Mit Einfithrung der mittleren Geschwindigkeiten « und v und der 

Potentialfunktion . 

‘ —, — (22 CeN\pe 
(2) De ( 3u ) h 

hat man wieder 

Oop Ow’ 

(3) ie On’ oe Oy 

In diesem Falle fallen die Potentiallinien nicht mehr mit den Kurven 

gleichen Druckes zusammen. Wenn @ als Funktion von x und y bestimmt 

ist, so hat man fiir den Druck 

.3u®P 
(4) DY ee 

Fiir die Funktion ® haben wir die folgenden Randbedingungen zu 

erfiillen: sie mu erstens konstant sein lings der y-Achse, d. h. fiir 

x=0 mu ay=0 werden, was gleichbedeutend ist mit der Forderung, 

daB die Fliissigkeitsteilchen horizontal aus dem Gefai® in den Kanal ein- 

treten. Ferner muf fiir z=H, d.h. also auf dem Boden des GefaBes 

bzw. des Kanals, fiir jeden Wert von x 

vy =O0, also ce =0 
Y) 

werden. Wenn die Kanalwinde bis x =/ reichen, so muB schlieBlich der 

Druck fiir 2—J konstant sein. Wir kénnen ihn gleich Null setzen. 
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Die beiden ersten Bedingungen kénnen befriedigt werden durch eine 

Reihe von der Form 

(2n —1 24 
(5) P= Syne Sg 

ne SS mY 

nm=1 

yh? 
Fir «=1 wird gemaB (5) Ce also gem&iB (2) unter Beachtung 

der dritten Bedingung 

he = Teas ene 
= > 4nin' te ee ee 

n=1 

Auf Grund der Identitat 

8H ~\ 1 . Qn—1)ay 
= 3 — 1 Be cp een et 

Y 70? 2 1) (2m —1)? poe 2H 

findet man daraus durch Koeffizientenvergleich 

Seog Hh? 1 

snCr= i. Cee lan 
Sin — ae = 

(6) Ae)? 

Die sekundlich durch den Verbindungsquerschnitt 2Hh zwischen 

GefaB und Kanal hindurchtretende Fliissigkeitsmenge wird 

HH 

(7) Q=2 (32) eS ee eee 1 dy =2h > "An. 
2=0 n=l 0 n=1 

Die Funktion @ ist der reelle Teil der komplexen Stromfunktion 

(8) V=O-i tat Ane 
— 2H > 

n=1 

wobei Z=a-+7y zu setzen ist. Daher wird die Stromfunktion 

(2m — 1) 2n — 1); (8a) pe dante of 5a 0s ae 

Man sieht, daB der Boden z= H der Stromlinie Y—0 entspricht, wihrend 
die freie Grenze der Schicht die Gleichung 

(9) y yA 
nm=1 

hat. Daraus ergibt sich wieder der oben berechnete Wert des Flusses 



§ 12. Strémende Fliissigkeitsschicht von linear veriinderlicher Dicke. 41 

§ 12. Strémende Fliissigkeitsschicht von linear veriinderlicher 
Dicke. 

Die Betrachtungen des vorigen Paragraphen wollen wir auf den Fall 

ausdehnen, dafi die beiden Begrenzungsebenen der Schicht unter einem 

sehr spitzen Winkel zusammenstoBen. Wenn die v-Achse mit der Schnitt- 

geraden beider Ebenen zusammenfallt, und wenn die 2y-Ebene die keil- 

formige Schicht halbiert, so kénnen wir setzen: 

h=ay. 

Die Kontinuitatsgleichung wird in diesem Fall, da wir y und h als 

radiale Zylinderkoordinaten auffassen kénnen, 

A (hey) , O(hy) _ 
(1) ep ees eae Gale te 

Ubernehmen wir ferner die Ausdriicke des vorigen Paragraphen 

h? Op 2 h? Op 

(2) O— 9 3102° 9 “Bu dy 

so ergibt sich durch Hinsetzen in (1) die Differentialgleichung fiir die 

Druckfunktion 
GUS ONG BCG 

2 aat Taye ty dy — > 
Wenn wir die Stromfunktion durch die Gleichungen 

I Oe ib Ohee 

(4) TS oa OU ein iy 
einfiihren, so ergibt sich fiir W die Gleichung 

1 ao a Odo 
6) ey ee 

Dieselbe Gleichung ergibt sich, wenn wir die Geschwindigkeitsaus- 

driicke (2) und (4) gleichsetzen und p eliminieren. 

Allgemeine Lésungen der Gleichungen (3) und (5) kann man durch 

die Substitution 

OF 

P = (A Co} ka + B Sin ka) wy) 

erhalten. Die Funktion y(y) geniigt dann der Differentialgleichung 

” 3 , ¢ 

Ny Neth Mi) ee By) == 0 - 

Setzt man y=y?-Z(ky), so geniigt Z der Besselschen Gleichung 

tt 1 y 4 i vs Z + 4,2 +(I uae oe 

Z ist also eine Besselsche Funktion 2. Ordnung, und wir erhalten 

daher ein Integral der Gleichung (5) in der Form 

(6) p= >'(A Cof ka + B Sin ka)y?Z2(ky). 
i k 
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Auf Integrale dieser Art werden wir spater bei einer anderen Gelegen- 

heit zuriickkommen. Vorliufig wollen wir uns begniigen mit einer be- 

sonderen Lisung, die folgenden Annahmen entspricht. Denken wir uns 

eine Strémung in Richtung der x-Achse, die durch den zwischen den 

Grenzebenen liegenden Teil einer Kugel 

a? + y? + 22 —= q? 

vom Radius a abgelenkt wird, so geniigt die Stromfunktion 

5 

(7) = (1 — a\yt=e(l —<|résint y 

der Differentialgleichung (5) und den einschlagigen Grenzbedingungen. 

Denn zunachst wird Y= 0 fiir r=a. Ferner erhalten wir 

37a 2 5) 5 yeas 

(8) Ge HI a(t 2 ee a 
(Ge ph? ct 7 75 

v, nahert sich in gréBerem Abstande von der Kugel der Null. Fiir die 

ungestérte Strémung ergibt sich 
4cy* Rete aah set le 

a 

Wenn etwa durch einen Querschnitt, der durch die Wande und den 

mit y= Yo beschriebenen Zylinder begrenzt wird, die Menge Qo hindurch- 

flieBt, so wird 

Yo 

(9) Qo = |vrcydy =cys, 
0 

also 

Qo 

aye, 
Zur Charakterisierung der durch (7) dargestellten Str6mung erinnern 

wir an die entsprechende achsensymmetrische, nach auBen unbegrenzte 

Stroémung, deren Stromfunktion der Gleichung 

OPE Gel. ea 10 ee ( ) Ox oy" y Oy 
Sa) 

genugt und im Falle eines kugelférmigen Hindernisses die Form 

3 

(11) P=(1—2)y2 ale 
hat1). In unserem Beispiel der Keilstromung dringen sich die Strom- 
linien in der Mittelebene mit wachsendem Abstand von der Kontur =O 
viel enger zusammen als im Meridianschnitt einer reibungslosen Strémung 
um eine Kugel. 

) Vel. Wilh. Miller, Math. Strémungslehre, S. 57. 
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DRITTES KAPITEL. 

Geradlinige zweidimensionale Strémung 
mit zylindrischer Begrenzung. 

$13. Axiale Bewegung von Zylindern in der ziihen 
Fliissigkeit. 

Wenn sich ein unbegrenzt langer Zylinder mit beliebigem Querschnitt 

in der Richtung der geradlinigen Erzeugenden bewegt, so wird infolge des 

Haftens an der Oberflache eine Stromung erzeugt, die als geradlinig vor- 

ausgesetzt werden kann. Ist die z-Achse der Bewegung parallel, so ist die 

Geschwindigkeit v,—v nur von # und y abhangig, und wir erhalten bei 

Unterdriickung der Tragheitsglieder und unter der Annahme, daf~- der 

Druck in der z-Richtung unverinderlich ist, als maBgebende Gleichung 

fiir v 

Ov ov Ov 

(1) PADS) (5 ae a. Ot 

die im stationaren Fall die einfache Form erhalt 

(2) Av=0. 

Die Lésung soll an die Bedingung gekniipft sein, da am Zylinder die 

Stromgeschwindigkeit mit der Bewegungsgeschwindigkeit des Zylinders 

iibereinstimmt. Die Strémung geniigt also derselben Differentialgleichung 

wie die Potential- oder Stromfunktion der ebenen Strémung einer idealen 

Flissigkeit. Die in der Theorie der reibungsfreien Stromung angewen- 

deten Methoden (insbesondere die Methode des komplexen Potentials 

und der konformen Abbildung) kénnen also ohne weiteres auf den vor- 

liegenden Fall tibertragen werden. So kann man 

VU Ox, y) 

als Potential einer idealen Stromung auffassen, deren Stromlinien ¥/(x, y) 

=c die Potentiallinien @(2, y)—=c orthogonal durchschneiden. Da @ 

und Y ihrer Bedeutung nach vertauschbar sind, liefert jede analytische 

Funktion 
y(Z)=x(etiy)=O+1.P 

der komplexen Veranderlichen Z= a + vy zwei Lisungen des vorliegenden 

Problems. Das Geschwindigkeitsgefalle ee der zihen Strémung lings des 

Randes, das der widerstehenden Tangentialspannung proportional ist, ist 

identisch mit dem ortsgleichen Geschwindigkeitswert der zugeordneten 

normalen Strdmung, deren Potentialflachen den Zylinder enthalten. Das 
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in der Umgebung des Zylinders entstehende Geschwindigkeitsfeld ist 

iibrigens an dieselben analytischen Bedingungen gekniipft wie als elek- 

trisches Potentialfeld des zylindrischen Leiters. Der allgemeine Fall einer 

zihen Strémung, die von 7 parallelen sich in Richtung der Erzeugenden 

mit den Geschwindigkeiten v, v2 .. . v,, fortbewegenden Zylindern hervor- 

gerufen wird, ist gleichbedeutend dem elektrischen Feld in der Umgebung 

der elektrisch geladenen zylindrischen Konduktoren. Die Widerstands- 

kraft pro Flacheneinheit, die auf den iten Zylinder wirkt, entspricht 

dabei der elektrischen Oberflachendichte 

ie 
4m aa 

an derselben Stelle. 

§ 14. Axiale Bewegung von Kreiszylindern in der ziihen 

Fliissigkeit. 

1. Um Lésungen der Gleichung (2) von § 13 zu erhalten, genitigt es, 

analytische Funktionen der komplexen Variablen Z=a+7y zu bilden?). 

Setzen wir z. B. den reellen Teil der Funktion 

Z 

mit reellem wu, d und a der Geschwindigkeit v gleich, so ergibt sich 

(2) v=u+Alg—, 

und man sieht, daB y langs der Spur Z =r—=a eines Kreiszylinders mit 

dem Radius a den Wert uw annimmt. Durch (2) ist also jedenfalls eine 

der Grenzbedingungen erfiillt. 

Die Lésung stimmt aber insofern nicht mit den wirklichen Verhalt- 
nissen tiberein, als im Unendlichen die Geschwindigkeit tiber alle Grenzen 
wachst. Fiigen wir jedoch einen konzentrischen festen Zylinder vom 
Radius & hinzu, an dem die Fliissigkeit haften soll, so kann man fiir die 
von beiden Zylindern eingeschlossene lineare Stromung einen Ansatz von 
der Form 

é Z | R 
(3) v=Al -+ Blg— , a a 
machen. Aus den beiden Randbedingungen 

Ie 
)p=a = vo = Blg— 4 ObapHO= Ase 

') Vgl. etwa M. Brillouin, Lecons sur la viscosité des Liquides et des Gaz, 
1 1 Paris 1907, S)6l £ 
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ergibt sich dann 

je Ey en 
lg Rk lg ce 

a R 

also die Lésung 
, 

lg — 

(4) Vv = U0 R . 

Pes 
AD 

Wenn man jetzt R wachsen laBt, so kann man mit jeder beliebigen 
Annaherung dem Fall einer unendlich ausgedehnten Fliissigkeit Rech- 
nung tragen. 

Der Widerstand pro Lingeneinheit, den der Zylinder r=a bei der 
Bewegung erfahrt, ist 

vee Qa uu 
(5) (a= ule adg=— on 

0 lg 

Er ist also der Geschwindigkeit proportional und um so 

groBer, je enger das Rohr ist, in dem sich der Kreiszylinder 

bewegt. 

Durch Vermittlung einer konformen Abbildung gelingt es, den Aus- 

druck (3) auf andere Randkurven zu iibertragen. So transformiert sich 

das von den beiden Kreisen \z|=a, 

lz | = R eingeschlossene Gebiet durch 

die Funktion 

C=248 

in das entsprechende Gebiet zwi- 

schen zwei konfokalen Ellipsen der 

¢-Ebene, deren halbe Brennweite 

gleich 2 ist. Wir werden weiter 

unten auf den Fall zuriickkommen. 

2. Als weiteres Beispiel betrach- 

ten wir einen Kreiszylinder in der 

Umgebung einer festen unbegrenz- 

ten Ebene. Die Ebenenspur kann Abb. oo aie Bewegung eines Kreis- 
; zylinders parallel zu seinen Erzeugen- 

ersetzt werden durch das auf sie den in der Nihe einer ebenen Wand. 
bezogene Spiegelbild des Kreises. 

Fiihrt man bipolare Koordinaten ein in bezug auf die beiden symmetrisch 

zur Ebenenspur x0 gelegenen Punkte O, und O, mit den Koordinaten 

+idund nennt 7, und rz die Koordinaten O,P bzw. O2P eines Auf: 



46 Geradlinige zweidimensionale Stromung mit zylindrischer Begrenzung. 

punkts P, so ist “8 auf den Kreisen eines Biischels konstant (Abb. 9). Die 
2 

Mittelpunkte der beiden symmetrischen Kreise mit den Radien a haben 

den Abstand aie 

= ye d? + a? 

von der Geraden «=0. Wenn a und 6 gegeben sind, so kann man d 

eindeutig bestimmen. Fiir einen dieser Kreise ist ferner 

r, a—-b+d b-d_ 4 

i, DE O=a" "ao berde 

Als Geschwindigkeitsfunktion kann man den Realteil ® der ana- 

lytischen Funktion 

(6) Ve ee 
Z+id 

benutzen, der die bemerkenswerte Umkehrung gestattet 

(7) Z= —idCtgs- 

Den Geraden ®=const, in der ¥-Ebene entsprechen die Kreise des 

durch die Gleichung 
ip |Z—wd 
Ts =" Ney VIG) = const lg 

definierten Biischels der Z-Ebene. Es sind die Potentiallinien einer idealen 

Strémung, die als von einer in Z=7d gelegenen Quelle und einer inZ=—id 

gelegenen Senke erzeugt gedacht werden kann. Die konjugierte Stromung 

hat als erzeugende Singularitiiten zwei gegensinnige Wirbel in denselben 

Punkten. 

Setzt man also 
K 

(8) sey v=clgr =c@ 

und bestimmt die Konstanten durch die Forderung, daB die Geschwindig- 

keit v am Umfang des Kreises K gleich wo wird, so hat man 

Ug i 
— ~ - [o- - 

(9) ond Sr, 
g a 

+): Jese i iokel fille 14 Cy a Krej + ; . Das Geschwindigkeitsgefille lings des Kreiszylinders ergibt sich aus 
der Geschwindigkeit der Vergleichsstrémung cz(Z) zu 

ee Co Qid 
ag \\8 Zara ~ OF ge? 

setzt man Z=a-+ cos p+i(b+a- sin ~), so wird 

Va= IV | ey i : a(b + asin g) 
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Daher ist die Widerstandskraft pro Langeneinheit des Kreiszylinders 

Up 

lg b— d 

a 

Pe et | eat eP (10) NEAT sera saye 
6 

=2ulce=2ruU 
No b 

3. Wenn wir von der konjugierten Vergleichsstrémung ausgehen, die von 
zwei Gegenwirbeln erzeugt wird, und eine Drehung um 90° vornehmen, 
so ergibt sich 

(11) y= O+iP =o go. 

Betrachten wir den Kreis |Z| =a als Querschnitt des mit der Ge- 

schwindigkeit w bewegten Zylinders sowie den diametral dazu liegenden 

auBeren Teil der X-Achse als 

Spur einer festen Ebene (vgl. 

Abb. 10), so ist o= mu setzen 

und es wird 
Z (12) v= D=—2(y, — gr). 

Die Geschwindigkeit v wird 

dann in der Tat gleich uv» auf dem 

Zylinder und sie verschwindet 

langs der beiden Halbebenen Abb. 10. Zur Bewegung eines Zylinders 
y=0 auBerhalb des Kreises so- zwischen zwei diametral gelegenen Ebenen. 

wie im Unendlichen. Die Rei- 

bungskraft langs eines Elementes adg des Kreiszylinders wird 

OP 0 
dP,r= wad an a == bs 

nun ist lings des Kreises 

Li nls _ BING, __ 

baw herrmng, eo" 
also 

(13) dP, ="" "dig te ys). 

Bei der Berechnung des Integrals ist zu beachten, daB die Reibung 

an der Stelle, wo der Zylinder mit der Ebene zusammenst6Bt, theoretisch 

unendlich wird. Wenn wir diese Stellen umgehen oder ausschlieBen, so 

erhalt man fiir die Reibung eines durch die Werte v2 und ¢y, bestimmten 

Streifens 
2UUo, tS Po (14) tardies | ice 
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§ 15. Strémung mit festen und bewegten Grenzebenen. 

Zwei weitere Falle lassen sich durch die bekannte Transformation 

Z iE VT 
(1) L=a2+iy =fColz; ie SO aes oF E 

erledigen. Wie man durch Trennung des Reellen und Imaginaren und 

Elimination von Y bzw. @ feststellt, entsprechen den Kurven ®= const 

und W=const in der %-Ebene zwei orthogonale Scharen von Ellipsen 

und Hyperbeln in der Z-Ebene mit den Gleichungen 

ae 2 ae 2 

oq eae . f2cos? Pane e —H 

Man sieht, daB das Verhiltnis der kleinen zur groBen Achse der durch 

den Punkt Z gehenden Ellipse durch Tg @ und der Winkel der Asymp- 

toten der durch Z gehenden Hyperbel und der x-Achse unmittelbar 

‘durch Y dargestellt wird 

(vgl. Abb. 11). Die Be- 

wegung eines elliptischen 

Zylinders mit den Halb- 

achsen a, 6 in Richtung 

(2) 

der Mantellinie ist nun 

durch den Ausdruck 

Up PD 

(3) va 
dargestellt, wenn 

Abb. 11. Zur konformen Abbildung einer kon- b b 

fokalen Hyperbelschar. UG POS ae Urtg ts 

gesetzt wird. Im Unend- 
lichen erhait man allerdings einen unendlich groBen Wert fiir v. Wenn 
man aber einen zweiten, konfokalen elliptischen Zylinder annimmt, dem 
der Parameter @=@, entspricht und die Geschwindigkeit v—0, so ergibt 

sich fiir v der Ausdruck 
u(P — P,) 

4 Ae reih (4) d €= 9, 

Wenn @)=~0 ist, so erhalten wir in 

eae (te 3 Seema a | a (2-2) 
DP, 

den Grenzfall einer bewegten ebenen Platte innerhalb eines elliptisch 
begrenzten zylindrischen Fliissigkeitsraumes. In diesem Falle ist. fiir 
einen Punkt der Platte 

(5) P= aretg |/ =" — arecos * 
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Das Geschwindigkeitsgefalle wird daher 

eupe Ou — hy OD hy OF 

On Oy DP,0y  ,0x 

und daher der Reibungswiderstand der Platte 

i 
a ‘Ov 2u ae UT Ug (6) Pee zal soda = ee ae 

Durch diese Forme! wird das von friiher bekannte Gesetz fiir den Wand- 
einfluB bestatigt. 

In der Hyperbelschar der Z-Ebene ist die y-Achse und der positive 
in «=f beginnende Teil der x-Achse enthalten, die wir als Spuren zweier 

Ebenen ansehen kénnen. Setzen wir voraus, daB die Ebene x=0 mit 

der Geschwindigkeit wu bewegt wird, wahrend die zweite Ebene fest ist, 

so kénnen wir die Stroémungsgeschwindigkeit » durch 
a 

(7) y= Hee 
darstellen. Fiir einen Punkt der y-Achse, d.h. der bewegten Ebene wird 

yg ee Basi eet 
i i Vy? + f2- 

Die Reibung, die auf den Streifen zwischen y und y+dy entfallt, 

wird dann 
: @ Pe 2 HG 

Ce wey yer Me ia NOY et OD, 

(8) Z=l1g 

Fiir den von y=0 bis y=/h reichenden Teil der Ebene wird also 

24, j A+ Vr? +f? ; (9) pe Sata 

Sondert man im Logarithmand den Faktor ae ab und entwickelt. den 

iibrigbleibenden Faktor, so kommt 

Quu[, 2h 1 f? (9a) Nie rer | er eee ye 

Ist A gegen f groB, so reduziert sich der Widerstand aut 

_ 2uU 2h 
(10) Py = pe fae 7 

Der Widerstand ist also um so groBer, je kleiner der Schlitz 

zwischen beiden Ebenen wird. 

Die Formel (9) kann ferner dazu verwendet werden, um den EinfluB 

eines Schlitzes zwischen dem Kreiszylinder 

in dem Beispiel des § 14 anzugeben. Wenn pj; klein ist, so konnen wir 

fiir den Bogen O,P die Tangente in 0, an den Kreis substituieren. 

Miiller, Theorie der ziéhen Fliissigkeiten. 4 
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Wenn h auf der Tangente gemessen wird, so ist zunachst der Widerstand 

des vom Punkt P (zu gy, gehorig) bis zum Punkt ge =F reichenden 

Kreiszylinders Bb 
aE 2uu 2a 

i) Pj ee 

Hat der Schlitz die GréBe f, so ergibt sich der Widerstand des von 

g2=0 bis y2=¢ reichenden Teils des Kreiszylinders aus der Formel 

gp. 2uw Qh ip ’ (12) (Pp? = — Eg bas 
Wenn man den zweiten Ausdruck in der Klammer vernachlassigt, so 

erhilt man den Widerstand des Viertelzylinders zu 

(13) (ie Ge -? 

daher den Gesamtwiderstand 

(14) (Pr) = — aes lg = 

Die Giiltigkeit dieser Formel ist an die Voraussetzung gekniipft, dab 

5 und = vernachliassigbar klein sind. 

§ 16. Einige weitere Fille mit ebener Begrenzung. 

1. Als weiteres Beispiel zu dem Ansatz des vorigen Paragraphen 

betrachten wir die Beziehung 

(1) Z=axy-b(l + e%), 
aus der sich fiir x und y sich die Werte ergeben 

|e=a@M+bd(l+e°*cosc P) 
la 
ee |y=a¥ + be? sine B. 

Mit dieser Transformation laBt sich z.B. die Strémung behandeln, 
die durch die Translation einer Ebene mit freier Grenze (y=h, x= 0) 
erzeugt wird, und die lings einer dazu parallelen, beiderseits ins Unend- 
liche gehenden Ebene (y= 0) haftet. Die Bedingungen, die zur Ermittlung 
der noch unbestimmten Konstanten a, b, ¢ fiihren, sind 

1 P= fiir y=h, x negativ, 

2 P=0 fir y=0. 

Aus der ersten Bedingung folgt 
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Entwickelt man ferner die Exponentialfunktion, so folgt fir Y= YW, 

wy O- by O— (Te) é (J be ¢ 7 er T OI \ ee 

Der Ausdruck bleibt negativ, wenn 5 a gesetzt wird. Damit ist dann 

auch die zweite Bedingung erfiillt. Wenn wir also Y=v setzen, so 
haben wir die Darstellung 

h h =¢ : 
w= O+—(1l+e% cosa —|, 

Uy ae \ Up | 
(2) 

v (Se v — ES pit -gj — ' y ais a sin 27 So ae 

Langs der beweglichen Ebene wird ‘y v 
OW Wr WY 

ee CUS ee ie ud @ 
Oy) Oya mon ‘ OY ee "Abb. 12. Zur Bewegung einer einseitig | 

In der Nahe des Randes der Ebene egtenzten Ebene parallel zu einer 

parallelen festen Ebene. 
haben wir nach der Entwicklung fiir x 

hn 
Oe U2 2u2 

— 2x 

oe Doe Ae Vs d 

wobei das positive Vorzeichen sich auf die auBere, das negative auf die 

innere Seite bezieht. Daher wird die Reibung vom Rande bis zu einem 

kleinen Abstand a auf jeder Seite 

© 

(3) Pr® = u/dO= UW O=— Lr 

0 
mh 

In groBem Abstand vom Rande auf der inneren Seite (p negativ und 

absolut groB) erhalt man aus (2) 

daher 

(4) (P= —“8(—2+—). 

Auf der oberen (auBeren) Seite (@ >0) dagegen wird angenahert 

Pn eels u 70H 

4* 
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also der Reibungswiderstand 
7U Xv 

(5) (Pre= —“*lg(1— 7}. 

Der Gesamtwiderstand, gerechnet bis zu einem im Vergleich mit h 

groBen Abstand x, wird daher 

x 1 TU & 
(6) Pr=(P + (Pe =—pwo|— 4 + 2]1+]e(1—%))]} 

Dieselbe Lisung ist zu verwenden fiir die beiden Ebenen y=$h, 

a<=0 und y=—ih, «<0, deren eine sich in der z-Richtung bewegt, 

wiahrend die andere in Ruhe ist. Man hat nur an Stelle von uw» und h 

die Werte “° und ih einzusetzen. Es muB aber bemerkt werden, dab 
2 

im Unendlichen die Geschwindigkeit nicht verschwindet, sondern gleich 

“0 wird 5 ‘ 

Gz 

Abb. 13. Isotachen (fiir die Strémung, die von der Bewegung einer einseitig 

begrenzten Ebene zwischen zwei festen Ebenen erzeugt wird (nach Maxwell). 

2. Der Einflu8 der Bewegung einer einseitig berandeten Ebene 

(y=0, x >0) zwischen zwei unendlichen Ebenen im Abstand h lABt 

sich vermittels der konformen Abbildungen 

: h : 
a+ ty=— {im —lg(C2?—I)), 

(7) : u § | 
| Y=O+iP= lg. 

berechnen. Wie man sieht, entspricht die bewegte Ebene g, der Strecke 
n=0, €?=1 (mit den Endpunkten A,, 4.) in der €-Ebene, und der Rand- 
punkt dem Punkt €¢=0. Die Verlingerung von g, iiber den Rand hinaus 
entspricht der 7-Achse. Ferner wird, da fiir y= 0, Ft 

ae es =a Wes &e 2 
x ae = Igayetin 

= const = up 
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Die beiden festen Ebenen g2 und g, dagegen entsprechen dem von den 
Endpunkten A, und A, ins Unendliche gehenden Teile der &-Achse; da 
in diesem Fall 

2 Ug €—] 
D+i% aie lg Fal 

wird, so verschwindet Y fiir die Punkte der Geraden gz und gs. Y kann 
daher unmittelbar als Geschwindigkeitsfunktion » definiert werden. Da x 
die komplexe Stromfunktion 

einer Stromung in der ¢-Ebene 

darstellt, die von der Quelle A, 

zur Senke A, geht, so ent- 

sprechen die Stromlinien, d. h. 

die Kreise durch A,, A», den 

Linien gleicher Geschwindigkeit 

v der zahen Strémung (vgl. Abb. 

13, 14). Diese Kurven in der Z- 

Ebene selbst haben zwei Asym- 

ptoten parallel und zu beiden Sei- 

ten der Ebene g, und ihre Scheitel 

auf der Verlangerung von 9). Abb. 14. Zur konformen Abbildung der 

Wie in den friiheren Beispielen Maxwell-Strémung. 

erhalten wir mit Y= » fiir die 

Reibung auf der oberen Seite der beweglichen Ebene vom Rande 

zx=0, €=0, ®=0 bis zu der Stelle x den Ausdruck 

Uo | 7 Fhe eh 
(8) Pann]! + 21g(1 +] l—e bh | 

der fiir ein kleines y in den Ausdruck 

Uy (a , u 21g2 
(8a) Pp=— ll = ie + 2lg 2] =— LU ; y ces h 

tibergeht. Die Gesamtreibung ist also ebenso groB, als ob die Verteilung 

bis zum Rande gleichmaBig und die Ebene tiber den Rand hinaus um 

2-1g2 ein Stiick .h=0,44h verlangert wire. Dieses Ergebnis hat 

Maxwell benutzt, um den Einflu8 des Randes einer in der zihen Flissig- 

keit zwischen zwei Ebenen rotierenden Scheibe naherungsweise zu er- 

mitteln!). Bei Maxwell wird ferner noch der Fall beriicksichtigt, dal 

die Scheibe eine merkliche Dicke 26 hat. Dann lautet, wie wir ohne 

1) Vgl. J. Cl. Maxwell, Scientif. Papers vol. II, Cambridge 1890, 8. 17. 
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Beweis mitteilen wollen, der entsprechende Ausdruck fiir die Korrektur- 

lange 
m(h— 0d) 7 2h - 

= == » ———— es Ig2 + Igsin —35—_|; 

der in der Tat mit 6=0 in den vorigen Ausdruck tibergeht. 

Weitere Einzelheiten, die mehr Bedeutung haben fiir elektrische und 

magnetische Stroémungserscheinungen, findet man in den Abhandlungen 

von J. J. Thomson!) und in dem bereits angefiihrten Buch von 

M. Brillouin?). 

VIERTES KAPITEL. 

Strémung durch zylindrische Rohre. 

§ 17. Das Poiseuillesche Gesetz. 

1. Wenn eine Fliissigkeit unter einem Druckgefalle durch ein gerades, 

in der x-Richtung gestelltes Rohr flieBt, so haben wir fiir die Haupt- 

richtung die Bewegungsgleichung 

1 Op Ov 
(1) ke +v4vz= - = + vz “ag 

Wenn wir annehmen, da die Strémung laminar sei, und die Bahnen 

aller Fliissigkeitsteilchen der Rohrachse parallel laufen, so folet aus der 
Pinar oe: ; 
Kontinuitatsgleichung wegen v,=v,=0 

A 
~ == (). 

Oz 

Die Stromgeschwindigkeit ist also lings einer Parallelen zur Rohr- 

achse konstant und die Gleichung (1) vereinfacht sich daher zu 

(La) ke + VA v2 = 
1 Op 

Oz 00 

wahrend die anderen beiden Bewegungsgleichungen die einfache Form 
annehmen 

lop 1 Op 
2 [3 =U; 17) elie (2) ky ae 0; ky nee 0. 

2. Kreisquerschnitt. Ist das Rohr kreiszylindrisch, so kénnen 
wir bei gleichformiger Strémung Achsensymmetrie fiir die Geschwindig- 

*) Recent researches in Electricity and Magnetism, 1893, Ch. III. 
2\"a. a. OS. 72 und 73: 
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keit voraussetzen und es ergibt sich bei Hinfiihrung von Zy linderkoordi- 
naten aus der Kontinuitatsgleichung 

O(rv,) _ O(rv,) 

(3) Tg is Er ea 

die Beziehung rv,—c, mithin, da nur c=0 méglich ist, 

vr = 0; 

ferner haben wir mit v,=v 

: O2v Lyeu\ 1 ep: 1 Op 1 Op 

ea! ie T; ae 0 Oz? io, mie ee a 

Wenn das Rohr etwa mit der Horizontalen einen (kleinen) Winkel a 

bildet, so ergibt sich 

ky = —gcosasing, ky = — gcosacose, kz = gsina. 

Man erhalt dann 

(5) p=—yreoscesing + f(z). 

Die Abhangigkeit des Druckes von der Héhenlage y=r- sin p folgt 

also dem hydrostatischen Gesetz. Aus der Hauptgleichung 

(6) gsina + vA vy = “fe 

ergibt sich weiter, daB f’ (z) eine Konstante sein muB, da v nicht von z 

abhingt. Nehmen wir an, daf auf einer Lange J der Druck von p, auf pe 

abfallt, so wird mit p,;,—p.=P 

/ Op (Pi — P2) 

le haghrrtaray peace ea 
und die Gleichung 

1o Ou Ie £.% 

aes al aps F a 

fiihrt dann, wenn man von der Schwerkraft absieht, also a=0 setzt, zu 

dem Integral 

(7) p= — part Bler te. 

Beim Fehlen einer inneren Begrenzung wird B=0, und wenn an der 

Wand fiir r=7, kein Gleiten stattfindet, so folgt 

IP 
(8) Ua 4ul ("5 = r”) ? 

d.h. eine parabolische Geschwindigkeitsverteilung tiber den Querschnitt. 

Die gréBte axiale Geschwindigkeit fiir r—0 hat den Wert 

Pi. 
(9) : COS Oe 
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Die Schubspannung bzw. Reibung pro Flacheneinheit an der Wand 

wird ; 

2) 
(10) Doe = 21 

Der Gesamtflu8 und die mittlere Geschwindigkeit werden 

T9 mn P 

| Q= [v-2Qserdr = ae os 

(11) 0 
Pode 1B Su 

m= ag Bul pe Ra ae 

Abb. 15. Geschwindigkeitsverteilung und Isotachensystem bei der Poiseuille- 

Str6mung durch ein Kreisrohr. 

Das damit abgeleitete Hagen-Poiseuillesche Gesetz1) kénnen wir 

dahin aussprechen, daB das Druckgefalle proportional der mittle- 

ren Stromgeschwindigkeit und umgekehrt proportional dem 

Quadrat des Radius ist. Die Durchflu&8menge dagegen ist bei 

gleichbleibendem Druckabfall der vierten Potenz des Radius 

proportional. 

Die Geschwindigkeit erhalt einen zusiitzlichen Bestandteil, wenn man 

annimmt, dai die Fliissigkeit an den Wanden gleitet, mithin eine 

Bedingung von der Art 
hn ke 

Sho fun ery 
d 

besteht. Es ergibt sich dann 

Setzen wir A = : , so wird 

¢ de 2 2 (3 oy (12) ew ovr a AT 

und man sieht, da bei kleinem - die Geschwindigkeitsverteilung die- 
0 

1) Vgl. G. Hagen, Abh. der Berl. Akad. d. Wiss., Math. Abt., S. 17; Ann. d. 
Phys. 46, 413 (1839); J. L. M. Poiseuille, Mém. Savants Etrangers 9, 433 (1846). 
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selbe ist wie in einem Rohr vom Radius ry-+- 4, an dessen Wand die Fliissig- 

keit haftet. Fiir den FluB haben wir 

IE 5 
(ro ain A)* 5 

7 

ue) Su ud 
ae +4- 7.) 

Diese Gleichung ist insbesondere fiir die Gasstromung von O. E. Meyer 
(1866) und von Boussinesq (1868) tibernommen worden. 

den mittleren Druck p= (p,-+ pz) und die Dichte 9 einfiihren, so haben 

wir fiir die Masse des pro Zeiteinheit durch ein Rohr stromenden Gases 

den Ausdruck 

(14) 

Wenn wir 

eQ= Gp (i+4 2) Mare (2). 

Aus diesen Formeln geht hervor, daB die Abweichungen vom 

Poiseuilleschen Gesetz um so deutlicher in Erscheinung treten, 

je enger das Kreisrohr ist. Sehr genau durchgefiihrte Messungen 

haben aber dieses Gesetz, jedenfalls fiir Fliissigkeiten und fiir kleine, 

unterhalb eines gewissen kritischen Grenzwertes bleibende Geschwindig- 

keiten, und damit gleichzeitig indirekt das Haften der Fliissigkeit an den 

Wanden bestatigt. Um z. B. die Giiltigkeit des Potenzgesetzes zu er- 

weisen, hat Poiseuille Kapillarréhren von verschiedenem Durchmesser 

verwendet und die Druckdifferenz »,;—p. konstant gehalten. Bei einem 

Eintrittsdruck p,;=775 mm und dem atmospharischen Austrittsdruck 

ergab sich fiir Wasser folgende Tabelle+) fiir die durch den Versuch und 

nach dem Potenzgesetz rechnerisch bestimmten DurchfluBmengen (: 

2-r, (mm) | Q (Versuch) cm?/500s | Q (Rechnung) 

0,014 | 1,465 1,465 

0,029 28,826 28,808 

0,044 141,50 141,63 

0,0855 2067,4 2069,8 
0,118 6398,3 6389,2 

0,14 | 15532 15547 

Man sieht daraus, dali die mittlere Abweichung der Versuchswerte 

von den theoretischen Werten nicht einmal 1°/o9 erreicht. In abnlicher 

Weise laBt sich die Abhingigkeit vom Druck und von der Lange des 

Rohres nachpriifen. 

Bei allen diesen Versuchen ist vorausgesetzt worden, daB sich bereits 

der stationire Zustand der Strémung ausgebildet hat. 

1) Vgl. z. B. Brillouin, a.a. O., S. 123f. 

In Wirklichkeit 
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tritt aber die durch das Poiseuillesche Gesetz ausgedriickte Geschwindig- 

keitsverteilung nicht sofort beim Einlauf in das Kapillarrohr in die Er- 

scheinung, sondern erst nach einer gewissen Anlaufstrecke unterhalb des 

Einlaufes, die etwa dem 50fachen Rohrdurchmesser gleich ist. Die Voraus- 

setzung der gleichmaBigen Strémung schliefit daher die praktische Forde- 

rung in sich, die Druckmessung an solchen Punkten anzuordnen, die von 

der Einlauf- und Auslaufstelle einen angemessenen Abstand haben. Im 

anderen Falle, d.h. wenn der Druck jenseits der Enden in den Behaltern A 

und B gemessen wird, ist eine Korrektur einzufiihren, die zum Ausdruck 

zu bringen hat, daB die Druckkraft die Reibung tiberwinden und die 

Beschleunigung beim Eintritt und auf der Anlaufstrecke erzeugen muB?). 

Das tatsiichlich zwischen den Enden C und # herrschende Druckgefalle 

pr’ —p2’ ist kleiner als das gemessene Gefille. Auf der Beschleunigungs- 

strecke AC wichst der dynamische Druck auf den Betrag Ss v2; der 

statische Druck sinkt demgemaB angenahert um den gleichen Betrag, 

so daB der Gesamtdruck kon- 

a = is a stant scrum Beer 

C D kann. Um die Poiseuillesche 

INS GS. stationare Str6mung zu_ er- 

zeugen, ist ein Druckaufwand 

erforderlich, der sich nach Erk folgendermaben berechnet. Die kine- 

tische Energie der in der Zeit dt durch den Querschnitt strémenden 

Menge ist bei Benutzung der parabolischen Geschwindigkeitsverteilung 

A) 2 

[2ardrvdt-o5 =xorrv® mdt. 

0 

Dividiert man durch das Volumen ar2v,dt, so ergibt sich ov als 

dynamischer Druckwert p,. Da dieser auf der Strecke AC auf den Be- 

trag tov* angewachsen ist, muB er auf der Anlaufstrecke nochmals um 

5 v” zanehmen, wahrend der statische Druck p, entsprechend fallen muB. 

Der Wert A p’=ov* ist ferner um den Reibungsverbrauch Ap” an Druck- 
energie zu vergroBern. Im Gebiete der stationaren Strémung bleibt Py 
konstant, wahrend p, und der Gesamtdruck linear abfallen miissen. Der 
am Ende der Kapillare herrschende Druck wird, wie die Versuche ergeben 
haben, nicht mehr in statischen Druck zuriickverwandelt. Der Druck- 
unterschied zwischen A und B ist also gegeniiber der Poiseuilleschen 

') Vgl. S. Erk, Uber Zahigkeitsmessungen nach der Kapillarmethode. Zeit- 
schr. f. techn. Physik, (10) 1929, S. 452—457. 
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Annahme um A p’+Ap"”=/ov? (A> 1) zu vergréBern. Wir haben daher 
in der verbesserten Formel zu setzen 

SuQl 
Hubs 

(15) Oi = Yop AF AOvm- 

Wenn wir nach yw auflésen, ergibt sich der korrigierte Wert fiir die 
Reibung 

ya OP _ 40@ 

aC), Bal 
eas 140Q? 

pa) oa gar (lt — a5) 

Das Zusatzglied wird auch als Hagenbachsche1) Korrektur be- 

zeichnet. Der von Hagenbach angenommene Wert A=0,79 stimmt 

aber. weder mit der Theorie, nach der A>1 sein mu, noch mit den 

neueren Versuchsresultaten iiberein. Aus strengen theoretischen An- 

satzen hat Boussinesq?) den Wert A=1,12 abgeleitet, der mit dem ex- 

perimentellen Resultat von Riemann’), nimlich 1,124 +0,006 (unabhangig 

von Kapillardurchmesser und Ziahigkeit), gut iibereinstimmt. Weitere 

Literaturangaben sind in der Erkschen Arbeit nachzulesen. Dort findet 

sich auch eine neue Behandlung der bei der Messung der Zahigkeit von 

Gasen notwendig werdenden Korrektur, die gréBer ausfallt als bei in- 

kompressiblen Flissigkeiten, da hier noch die Expansionsbeschleunigung 

beim Druckabfall beachtet werden muB. 

§ 18. Einfache Anwendungen des Poisseuilleschen Gesetzes. 

1. Im AnschluB an die Betrachtungen des vorigen Paragraphen be- 

sprechen wir das einfache dynamische Problem des Anstieges einer Fliissig- 

keit in einem Kapillarrohr, das in ein weites, teilweise mit Fliissigkeit 

gefiilltes GefaB taucht (vgl. Abb. 17). Fiir die veranderliche Geschwindig- 

keit des Anstieges haben wir nach § 17 

Oe IB ik 

0 ee ine eS (le 

Wenn der Hodhenunterschied der beiden Spiegel h—z betragt, und 

die Kapillaritatskonstante oder die Zugspannung pro Lingeneinheit an 

der Oberflache der Flissigkeit im Rohr S heiBt, so haben wir als auf- 

wirtstreibende Kraft 

Kar yh —2) + 207r,-S, 

1) Vgl. E. Hagenbach, Pogg. Ann. 109 (1860) 8. 385. 

2) J. Boussinesq, Comptes Rendus, 110 (1891) 8S. 1160 u. TB} (USE) IS 8) 

8) W. Riemann, Journ. Amer. Chem. Soc., 50 (1928) S. 46. 
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mithin 
18 28 

@) her peal 
Nach (1) ergibt sich daher fiir z die Differentialgleichung 

8u dz eo ee) 
: (3) Rea =VG—a+ 

Wenn z=0 ist zur Zeit t=0, so ergibt sich fir 

die Zeit, die bis zur Erreichung der Hohe z ver- 

geht, der Ausdruck 

Setzt man die Geschwindigkeit gleich 0, so er- 

gibt sich, daB die Flissigkeit im Kapillarrohr bis 

zur Hohe H=h + ae steigt. Bis zur tatsachlichen 
vr 

Erreichung dieser Héhe wiirde sich allerdings aus 
Abb. 17. Anstieg einer 

Flissigkeit im Kapil- : ia: oe i : 
laeohie 2. Wenn die Fliissigkeit im einem von zwei 

der Theorie eine unendlich groBe Zeit ergeben. 

konzentrischen Kreiszylindern mit den Radien 79, 

Ry begrenzten Rohr flieBt, so haben wir in dem allgemeinen Ausdruck 

[§ 17, (7)] P 
. = — ia tr Bere 

die Konstanten 6 und C aus den Haftbedingungen zu bestimmen. Man 

erhalt dann 

joe beliiee 7h LE ne ae aes 
4ullgR, —lgr,’ 4ul gRy—-lgry 

mithin 

(5) Pr? — R8)lgry ~ (r? — 13) 1g Ry + (RB — 18) ler 
4ul lg Ry —Igro 

Die DurchfluBmenge wird 

Ro 9 ‘ 2 2 D s Q=20 fordr = ee EE a) Hale Ee stato ola re 
0 a ? Ig? 

(6) < Be)" SE eee 
Ig tl 9 jet 

ro ro 

3. Diese Formeln kénnen auch auf einen Fall angewendet werden, 
der mit den Betrachtungen des IIT. Kapitels zusammenhingt?). Sei ein 

*) Vgl. auch H. Bouasse, Hydrodynamique générale, Paris 1928, S. 205. 
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kreiszylindrisches, beiderseits abgeschlossenes GefaR A gegeben, dessen 
Héhe groB sein mége im Verhaltnis zum Durchmesser 2+ Ry. Ein ko- 
axialer Zylinder a mit dem Radius 7, bewegt sich in den Fiihrungen F, 
und F, mit der axialen Geschwindigkeit U, waihrend das Ringgebiet 
zwischen beiden Zylindern mit Fliissigkeit gefiillt ist (vgl. Abb. 18). Die 
Plissigkeit wird von a mitgenommen und 

ae 

an auf der anderen Seite in einem gewissen Ge- 

biet in der entgegengesetzten Richtung 

flieBen, so daB im ganzen eine ringformige 

Zirkulation entsteht. In der Mitte des Zylin- 

ders, d. h. in gentigend groBem Abstand von 

beiden Enden, wird der Geschwindigkeits- 

verlauf etwa dem in der Figur dargestellten 

Diagramm entsprechen, und wir kénnen die 

ral 

Stroémung in erster Anniherung als eine 

zylindrische auffassen. Da in einem gewissen 

Abstande 7» von der Achse die Geschwindig- 

keit verschwinden mu, ebenso wie lings 

des auBeren Zylinders, so kénnen wir den 

Ausdruck (5) unmittelbar benutzen. Durch eae 

zwei weitere Bedingungen lassen sich dann Abb. 18. 

sowohl P wie 7, bestimmen. Diese Be- 

dingungen beziehen sich darauf, da die Geschwindigkeit Es Str6- 

mung langs a den Wert U annehmen und der Gesamtflu8 durch den 

mittleren Querschnitt verschwinden, d. h. 

Ro 
fordr= 

QT 

[8 4 1B 1072|"" — 0 ecru 3 ip (lgr —3) +4 i 

werden muB. 

§ 19. Kapillarmethode der Zihigkeitsmessung. 

Wenn man zunachst die Giiltigkeit des Poiseuilleschen Gesetzes 

fiir Kapillarréhren voraussetzt, so kann man durch versuchsmaBige Be- 

stimmung der durch das Rohr flieBenden Menge @ bzw. der Durchflub- 

oder AusfluBzeit 7’ den Reibungskoeffizienten 4 und damit die kinema- 

tische Zahigkeit » fiir verschiedene Flissigkeiten nach der Formel 

(1) H=YQ=E7G 

bestimmen, die eventuell durch das berechnete Korrekturglied zu er- 

ganzen ist. Bei der Ableitung dieser Formel ist zunichst der Druck 
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als konstant angenommen, was bei den tiblichen Viskosimeterformen 

nicht immer zutrifft. Nur wenn der Druck durch komprimierte Luft 

erzeugt wird, kann er leicht konstant gehalten werden, falls man einen 

Behialter verwendet, dessen Volumen gro8 ist im Verhiltnis zu dem bei 

der Messung zu bewegenden Fliissigkeitsvolumen, und der auBerdem vor 

Temperaturschwankungen geschiitzt ist. Wenn die Druckdifferenz da- 

gegen nur durch eine Fliissigkeitssiule hervorgerufen wird, so wird er im 

allgemeinen mit der Hohe dieser Saule selbst veranderlich sein. Wird 

auf diese Veranderlichkeit Riicksicht genommen, und z die augenblick- 

liche Hohe der Saiule genannt, so mu man von der aus (1) zu entnehmen- 

den Differentialbezicehung ausgehen, d. h. von dem Ausdruck fir die 

wahrend der Zeit dt ausgelaufene Menge 

(La) a Ot. 

Man kann nun die Gleichung integrieren und eime einfache Be- 

stimmung der Zahigkeit durchfiihren, wenn die Teile des Viskosimeters, 

Abb. 19. Viskosimeter von Koch. 

aus denen die Fliissigkeit in das Kapillarrohr eintritt, von einfacher 
geometrischer Form, also etwa kreiszylindrisch sind, wie bei dem ab- 
gebildeten Kochschen Viskosimeter!). Die Beziehung zwischen Q und 
der variablen Spiegeldifferenz z der Fliissigkeitssiiulen 4, B und C beider- 
seits des Kapillarrohres AK lautet, wenn der konstante Radius des GefaB- 
querschnittes 7; genannt wird, 

: hy — 2 
0 es 

Setzt man das daraus sich ergebende Differential 

1 
7 dQ = — 5 dznri 

) Vel. K. R. Koch, Wied. Ann. 14, 1 (1881); weitere Einzelheiten iiber Vis- 
kosimeter finden sich in E. Hatschek, Die Viskositat de ussigkei : , r Flissigkeit D 
und Leipzig 1929, S. 24f, Oo onan 
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in die Gleichung (la) ein und integriert zwischen den Grenzen zh, und 
z=h,, so ergibt sich 

Setzt man diesen Wert fiir r? in den Ausdruck fiir die gesamte be- 
forderte Fliissigkeitsmenge 

hy—h Qa oh wert 
ein, so erhalt man folgenden 

Ausdruck fiir die Zahigkeit 

_ aro (bo — hi) y wD 
(2) fe sory a I", 

g is 

Diese Grundformel kann fiir n 

sehr verschiedene Instrumente 

zur Zahigkeitsbestimmung ange- 

wendet werden. Wir erwahnen 

hier einen von Wo. Ostwald 

und R. Auerbach konstruierten 

Apparat!), der zur Untersuchung 

kolloider Loésungen verwendet 

worden ist. Hier ist die Kapil- 

lare K mit dem weiteren GefaB 

& verbunden, und da die Flis- Abb. 20. Viskosimeter Abb. 21. Ostwald- 

sigkeit vom oberen Ende von B yon Wo. Ostwald u. Viskosimeter. 
in den Trichter C lauft, so ist R. Auerbach. 

der Spiegel in 6 konstant, und 

die Héhen fy und fh, kénnen von hier aus gerechnet werden. 

Da gegenwartig die Reibungskoeffizienten vieler Flissigkeiten be- 

kannt sind, so geniigt es, statt der absoluten die relative Viskositat, 

d.h. das Verhaltnis der entsprechenden Koeffizienten zweier Fliissig- 

keiten (von denen derjenige der einen bekannt ist), zu bestimmen. Ein 

diesem Zweck dienendes Instrument ist das von Wilh. Ostwald an- 

gegebene ,,Ostwald-Viskosimeter“‘, das in der Abb. 21 skizziert ist. Kin 

konstantes, in den rechten Schenkel des GefaBes unterhalb der Kapillare 

eingefiilltes Fliissigkeitsvolumen wird iiber die Marke m hinaufgesaugt, 

und mittels Stoppuhr die Zeit gemessen, die es braucht, um von m bis 

n zaurtiickzuflieBen. 

1) W. Ostwald und R. Auerbach, Koll. Zeitschr. 41, 56 (1927). 
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Bei Annahme einer konstanten Druckhéhe / hat man dann, wenn 

man die Konstanten der Formel zusammenfaBt, 

[eee OO 

mithin fiir die Reibung einer anderen Fliissigkeit, mit der derselbe Ver- 

such durchgefiihrt wird, 
, _ 0 qe 

(3) w= oT . 

In Wirklichkeit ist selbst bei konstant gehaltenem Volumen die 

wirksame mittlere Fliissigkeitssiule bei verschiedenen Fliissigkeiten ver- 

schieden infolge der verschiedenen Oberflichenspannung (vgl. § 18). 

Um den hydrostatischen Druck bei 

den beiden Marken m und n zu be- 

stimmen, hat man von dem Niveau- 

unterschied zwischen m und n die ka- 

pillaren Steighéhen zu subtrahieren, 

die den Durchmessern an beiden Mar- 

ken entsprechen, d.h. einen Betrag, der 

der Oberflichenspannurg der betref- 

fenden Flissigkeit proportional ist. 

2. Fiir technische Zwecke, nament- 

lich um die Zahigkeit von Schmier- 

. mitteln zu bestimmen, verwendet 

man unter anderem namentlich in 

Deutschland das Eng!lersche Viskosi- 

meter, das im wesentlichen besteht 

Abbioo. sEaelers .Viskostmeccnmame einem gréBeren Gefif mit dem 

Durchmesser 2. und aus einem an 

der Mitte des kugelférmigen Bodens befestigten kapillaren AusfluB- 

rdhrchen vom Durchmesser 27) und der Lange J, das durch einen Hahn 

oder besser einen Holzstab abgeschlossen werden kann. Um den Zu- 

sammenhang zwischen der AusfluBzeit 7’ (der Zeit, welche vergeht, bis 
eine bestimmte, ablesbare Fliissigkeitsmenge ausgeflossen ist) und der 
Zahigkeit y zu findent), kann man die Reibungsverluste in dem gréBeren 
GefaB gegeniiber der Reibung im AusfluBrohr vernachliissigen. Dieser 
Reibung entspricht die Verlusthdhe 

y x 9 8 

(4) hw = Py — Pa = ad l 
” YT 

ee) Vgl. z. B. R. v. Mises, Elemente der technischen Hydromechanik, I. Teil, 
Leipzig 1914, 8. 184; ferner R. v. Mises, Physik. Zeitschr. Bd. 10, 1911, S. 812. 
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Man hat daher nach Bernoulli, wenn das Quadrat der Sinkgeschwin- 
digkeit im gréBeren GefaB vernachlissigt und die variable Spiegelhéhe 
iiber der unteren Offnung z genannt wird, 

er aes P 8u vl 

‘ 2g yr i. 
woraus mit k— ae © und der DurchfluBeleichung 

oa Vel” 

2 dz 2 
— To Re =P 5°V 

sich ergibt 

le ruil Rk zZ 

dt al —Jl+kz| dt = Srl Qeyiee 2) 

Wenn man 1+kz= 2? setzt, und zwischen den Grenzen z=ho (Yay) 

z—=h, (w=) integriert, so erhalt man die AusfluBzeit 

(5) Mp ss 
Srl R X)—1 
ee [xo — 21 4. log seat 

Das Engler-GefaB pflegt in ganz bestimmten Abmessungen her- 

gestellt zu werden. Diese sind 2R=10,6 cm, 27>=0,29 cm, hy=5,2 cm, 

hy= 2,93 cm (Q= 200 cm). Wenn man ferner die Zeit 7’) fiir den ent- 

sprechenden Versuch mit Wasser von 20° (7')=51,6 sec) bestimmt, so 

pflegt man das Verhaltnis 

(6) Es 2 
T, 

als Anzahl der Engler-Grade der Fliissigkeit zu bezeichnen. Mit Ein- 

fiihrung von # ergibt sich durch angeniherte Auflosung der Gleichung (5) 

nach v. Mises die Beziehung 
0, ve) 

(7) 7 =0,0864 E — —, = 

die von Ubbelohde durch die mit den Versuchen besser tiberein- 

stimmende Hormel 

(7a) y= 0,073.0 — 2 

ersetzt worden ist. Allgemein hat W.H. Herschel nachgewiesen, dal 

die Zahigkeit als Funktion der mit den Normalinstrumenten gefundenen 

Auslaufszeit 7’ in der Form 
B 

(8) ie arr, 

darstellbar ist, wo A und B Apparatkonstanten darstellen, die durch 

Messung der Auslaufszeit geeigneter Normalfliissigkeiten gefunden wer- 

den kénnen. Die entsprechenden Tabellen zur Umrechnung der mit 

den verschiedenen deutschen, englischen und amerikanischen Normal- 

Miiller, Theorie der ziihen Fliissigkeiten. 5 
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apparaten gefundenen Zahlen finden sich in dem fiir alles Versuchs- 

technische maBgebenden auf S. 62 zitierten Werke von Hatschek. 

Tabelle fiir einige Zahigkeitszahlen. 

Substanz Temp. [°C] y[em?s 4] 

Quecksilber 0 | 0,00125 

20 0,00117 

Benzol 20 | 0,00731 

60 | 0,00466 

Wasser 0 0,0178 

10 0,013 

20 0,0101 

Luft 0 0,133 

(Normaldruck) 20 0,149 

Maschinenol 10 noe 

(Deutz) 20 3,82 

Glyzerin 3 33,40 

20 6,80 

3. Bei allen Versuchen der geschilderten Art ist auf die Tatsache 

Riicksicht zu nehmen, daB sowohl der Reibungskoeffizient als auch die 

Zahigkeit groBe Empfindlichkeit gegentiber einer Temperaturanderung 

zeigen (siehe Tabelle). Jede Messung mu sich daher gleichzeitig auf 

die Temperatur beziehen, die nach Moéglichkeit waihrend des Versuches 

konstant zu halten ist. Fir die Abhangigkeit der Zahigkeit von der 

Temperatur (3° C) existieren verschiedene empirische Formeln, von denen 

nur einige namhaft gemacht werden sollen. So gilt nach Poiseuille fiir 

Wasser von 0°—100° die Beziehung 

0,0178 
(9) "T+ 0,0337 & + 0,00022 92 | 

Aus teilweise theoretischen Erwagungen hat Graetz die Formel 

ot, — + 
(10) te = A——_ 

angegeben, welche die kritischen Konstanten der Flissigkeit enthalt 
(kritische Temperatur #, und eine tief unter dem Gefrierpunkt legende, 
praktisch konstante Temperatur ,), und die fiir eine gréBere Anzahl von 
Flissigkeiten giiltig bleibt. 
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Eine weitere, eine groBe Reihe von Fliissigkeiten umfassende Formel 
von K. F. Glotte 

0 ul a (11) Le ea ae 

ist von Thorpe und Rodger auf alle Messungen angewendet worden. 
Wir haben fiir einige Fliissigkeiten die entsprechenden Konstanten zu- 
sammengestellt. 

| n 

Wasser (5,47° bis el 50,9848 | 43,252 1,5423 

Peutane ae ak he 19,459 165,59 1,7285 
CUUGRONON, 5 5 po a eo 4 & 40,4244 | 158,33 1,8196 

Athylither. . . 2 5 | Bee 7) TEES) Gia 
Ath vial konol: wae at . | 251908000 209,63 4,3731 

Durch Entwicklung der Formel haben ferner Thorpe und Rodger 

fiir w die Darstellungsform abgeleitet 

C 
(12) i Tada ne 

Die GréBenordnung des Gesamtfehlers der nach dieser Formel be- 

rechneten Werte wird auf 0,02% geschaitzt. Thorpe und Rodger haben 

dabei die Hagenbachsche Korrektur mit dem Zahlenfaktor m= 2 an- 

gebracht. Setzt man m=1,12, so wiirden die entsprechenden Korrek- 

turen 3,36--4,48 betragen. Der Unterschied des Wertes von m bedingt 

daher einen méglichen Fehler von 0,36~0,48%, der bereits die dritte 

Dezimalstelle beeinflussen kann. 

In bezug auf weitere Formeln, ferner die Zusammenhange zwischen 

den Resultaten und den Viskositatskoeffizienten einerseits und dem Tem- 

peraturkoeffizienten derselben und dem Ausdehnungskoeffizienten ande- 

rerseits, die sich aus dem Zahlenmaterial ableiten lassen, mége wieder 

auf das Buch von E. Hatschek verwiesen werden. 

§ 20. Strémung in Réhren mit nicht-kreisfOrmigen 
Querschnittsformen. 

Die in § 17 angegebene Grundgleichung fiir die gleichmaBige laminare 

Stromung in zylindrischen Réhren 

(1) A= 52+ oy = a ee 

stimmt formal iiberein mit der Differentialgleichung der Spannungs- 

funktion eines verdrehten zylindrischen Stabes oder der Stromfunktion 
5* 
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einer idealen Fliissigkeit, deren zylindrische Begrenzung einer gleich- 

miBigen Drehung um eine zur Erzeugenden parallele Achse unter- 

worfen ist. Im ersten Falle hat man die Konstante C durch 2: G- 

zu ersetzen, wo g den auf die Langeneinheit bezogenen Torsionswinkel 

und G@ den Schubmodul bedeuten, im zweiten Falle tritt an die Stelle 

von C die Winkelgeschwindigkeit der Drehung, deren entgegengesetzter 

Wert gleichzeitig die konstante, in der Fliissigkeit herrschende Wirbel- 

starke darstellt. Bei derselben Grenzkurve sind die Kurven gleicher Strom- 

geschwindigkeit im vorliegenden Falle gleichbedeutend mit dem System 

der Spannungslinien bzw. der Stromlinien in den Vergleichsfallen. Alle 

drei Felder lassen sich ferner durch das PrandtlIsche Gleichnis veran- 

schaulichen, das gleichzeitig eine gewisse experimentelle Lésung der Glei- 

chung (1) liefert. Denkt man sich namlich aus einem ebenen horizon- 

talen Blech die vorgegebene Querschnittsform herausgeschnitten und die 

Offnung durch eine Seifenhaut iiberspannt, so wird die Haut bei einem 

DruckiiberschuB auf der einen Seite die Gestalt einer krummen Fliche 

annehmen, und es la®t sich zeigen, da die Kurven gleicher Hohe auf 

dieser Flaiche (dem ,,Spannungshiigel) zugleich die Spannungslinien bzw. 

Stromlinien des Querschnittes!) angeben. Wenn S die Hautspannung 

und P den Uberdruck bedeuten, so gentigt die Ausbiegung ¢€ der Haut 

der Differentialgleichung 

Ores. GPS ie 
2 de ‘ay SS 

Wir wollten diese Zusammenhange nicht unerwaihnt lassen, weil beson- 

ders fiir den Torsionszustand fiir eine groBe Zahl von Fallen Lésungen?) 

vorliegen, die ohne weiteres auf den gegebenen Fall der Reibungsstré- 

mung tibertragen werden kénnen. 

1. Elliptischer Querschnitt. Wenn der elliptische Querschnitt 
der Gleichung 

entspricht, so haben wir eine der Gleichung (1) geniigende Geschwindig- 
keitsfunktion v (wv, y) zu bestimmen, die fiir jeden Punkt dieser Ellipse 
verschwindet. Setzen wir 

') Vgl. etwa A.u. L. Féppl, Drang und Zwang, II. Teil, Miinchen u. Berlin 
1920, S. 88. 

*) Vgl. die Ubersicht von Th. Péschl, Bisherige Lésungen des Torsions- 
problems. Zeitschr. fiir ang. Math. u. Mech., 1. Bd. 1921, S. 312—328. 
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so ergibt sich 

IP = IP oPoy? ip UP 5) ee ee an ee ee ee ee Y 6 ) = recent eG Sal Gta | a? d 
Die DurchfluBmenge wird, wenn die linke Seite der Ellipsengleichung 

mit 2 bezeichnet wird, 

P7a%b? (ee Pr a’b 

~ Qul(a? + 6b?) 

1 

(3) fa = Add 7 4ul (a? + b*) ; 
0 

Die Kurven gleicher Geschwindigkeit sind zur Grundellipse ahnliche 

und ahnlich gelegene Ellipsen, die man erhalt, wenn man den Para- 

meter 4 die Werte von 0 bis 1 durchlaufen lat. Wie beim Kreisrohr ergibt 

sich, daf§ die mittlere Geschwindigkeit v,, = “. halb so groB ist wie die 

axiale gréBte Geschwindigkeit. Halt man die Querschnittsfliche kon- 

stant und verandert das Achsenverhiltnis, so ergibt sich, dai dem Kreis- 

rohr die maximale DurchfluBmenge entspricht. Weiter sieht man, dab 

die mittlere Schubspannung am Rande beim elliptischen Rohr kleiner 

wird als die Randspannung fiir das Kreisrohr?). 

2. Dreieckiger Querschnitt. Wenn der Querschnitt ein gleich- 

seitiges Dreieck mit der Seite s ist, so verlegen wir den Anfangspunkt 

in den Schwerpunkt und lassen die eine Hohe in die y-Achse fallen. Setzt 

man dann 

C= a(23a — s) (c/3— 3y+ s)\(2V3+ 3y+s), 

so ist die Randbedingung erfillt. Es ergibt sich ferner 

4v=36sa=——; 
ul 

v (x, y) ist also eine Funktion, die der Differentialgleichung gentgt, 

wenn wir setzen 

iP 

aay, 36sul 

Daher ist der endgiiltige Ausdruck 

ea. 3 IS. (A WOW 0) re 2 (4) etna: ‘18 /3xy7—6)3a°— 9x°s —9sy?). 

Fiir die axiale Geschwindigkeit in = y=0 findet man 

ogee 

le 861) 

Die Kurven gleicher Geschwindigkeit kénnen in der Form 

2 
cs: 63 x3 = 9xis = 3% 

18/3x-9s 

1) Vgl. auch I. Boussinesq, Journal de Liouville, t. XIII, 1868, S. 377. 
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dargestellt werden. Die Durchflufmenge und mittlere Geschwindigkeit 

erhalt man ohne weiteres aus dem Verdrehungsmoment des entsprechen- 

den Torsionsproblems zu 

PstV3 IPs? 

C= 250 eae eee 

Die mittlere Geschwindigkeit verhalt sich also zu der Geschwindig- 

keit in der Mitte des Dreiecks wie 9: 20. 

NY 

Vg 

Abb. 23. Theoretisch-laminares Isotachensystem fiir einen Kanal 

von dreieckigem Querschnitt. 

3. Rechteckiger Querschnitt. Die Geschwindigkeitsverteilung 

fiir den rechteckigen Querschnitt ist ohne weiteres der bekannten Saint - 

Venantschen Darstellung ftir das entsprechende Torsionsfeld zu ent- 

nehmen. Wenn die Rechteckseiten zum Achsenkreuz die Lage haben 

v= +a, y¥=+b6, wobei a>b vorausgesetzt wird, so ergibt sich 

; cay Ee . 38u2 

_P |i a 1008 ny 26) Tee ee ees | 
aa a? re eG deer Ob es 

aly Cp) — ap | 

Fir die DurchfluBmenge hat man 

+b+a P 
VO ee MOLI 2 30a \ 

e=| [rdady 4ul\3 aa =|2 Bo a5 te 9 eto} 
—b—-—a 

also die mittlere Geschwindigkeit 

Pb: 16 1024 b 3na Pe fa 
16nt\3 n> | |2a95 + gs Ta a5 + |= ie ai (5) 

Un = 
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Die fiir den Durchflu8 maBgebende Funktion ¢ (5) des Achsen- 

verhaltnisses steigt, wie die beigegebene Tabelle zeigt, vom Werte 2,25 

100 | Ps) 

2,253 fa 3,664 | 4,203 | 4,498 | 4,665 | 4,777 | 4,842 4,916 5,000 5,059 5,299 | 5,333 

fiir = 1 (d. h. den quadratischen Querschnitt) erst schneller, dann 

mit asymptotischer Annaiherung bis zum Werte 5,33 fiir 577 O0 (casi 

den unendlich langen rechteckigen Querschnitt). Fiir das Quadrat 

ergibt sich z. B. der Wert 

ee ee 
ue 28,4 ul 

Man sieht also, daB die mittleren Geschwindigkeiten fiir die drei regu- 

laren Querschnittsformen des gleichseitigen Dreiecks, des Quadrats und 

des Kreises bei gleichbleibender Querschnittsflache und Rohrlange und 

gleichem Druck sich verhalten wie die Zahlen 

: 1 6 1 ‘ 1 ; 

34,6 28,4 ° 25,1 

Auch fiir den Kreissektor, den Kreisringsektor und andere Quer- 

schnittsformen laBt sich die Geschwindigkeitsverteilung und die Durch- 

fluBmenge in Form von unendlichen Reihen darstellen, wortiber man 

in den Arbeiten iiber das Torsionsproblem das Nahere nachlesen mége!). 

§ 21. Empirische Gesetze fiir die turbulente Rohrstrémung. 

Die in den vorigen Abschnitten besprochenen Gesetze verlieren ihre 

Giltigkeit, sobald die (mittlere) Geschwindigkeit der Strémung durch 

ein zylindrisches Rohr einen gewissen von der inneren Reibung und den 

Abmessungen des Querschnittes abhangigen Wert iiberschreitet. Wenn 

man fiir ein Kreisrohr als Reynoldssche Zahl 

v-d 
V 

KR = 

annimmt, wo v die mittlere Geschwindigkeit und d den Durchmesser 

bedeuten, so liegt der kritische Wert der Reynoldsschen Zah! zwischen 

2000 und 2300. Physikalisch ist der nach Uberschreiten der kritischen 

Geschwindigkeit eintretende Zustand dadurch charakterisiert, daB die 

1) Kine ausfiihrliche Literaturangabe findet sich in der bereits zitierten 

Arbeit von Th. Péschl, sowie im Handbuch der Physik (Geiger-Schee}), 

Bd. VI, Mechanik der elastischen KG6rper, 8S. 148ff, Berlin 1928. 
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Fliissigkeitsteilchen im Rohr nicht mehr in geradlinigen oder angenahert 

geradlinigen Bahnen, d. h. ,Jaminar‘’ sich bewegen, sondern in schein- 

bar ungeregelter Weise durcheinander wirbeln, so daB ein Teilchen alle 

moglichen Lagen im Querschnitt annehmen kann. Dieser zeitlich ver- 

anderliche Zustand wird alsTurbulenz bezeichnet. Seine Unterscheidung 

vom laminaren Zustand, wie ihn Poiseuille in erster Linie betrachtet, 

ist zam ersten Male von O. Reynolds?) (1883) ausgesprochen worden. Er 

beobachtete, daB ein in die Rohrstrémung eintretender diinner Farb- 

faden im laminaren Falle bei seiner Bewegung durch das Rohr im 

wesentlichen erhalten bleibt, wahrend er sich im turbulenten Falle auf- 

lést und ausbreitet. Wenn man ferner ein erwarmtes Rohr benutzt und 

die Temperatur feststellt, so zeigt sich der Eintritt der Turbulenz auch 

in einer bedeutenden Steigerung der Warmeleitung. 

Neuerdings hat L. Schiller?) nach dem Muster der klassischen Ver- 

suchsanordnung von Reynolds, d.h. mit Hilfe von Farbfaden, das 

Strémungsbild der Rohrstrémung in den ersten Stadien der Turbulenz- 

bildung, insbesondere in der Nahe des ,,scharfen oder ringfOrmig ab- 

gedeckten Einlaufes naher festzulegen “gesucht. Aus den Versuchen 

scheint hervorzugehen, daf die kritische Zahl wesentlich durch den Ein- 

lauf charakterisiert wird. Bei R<,, bildet sich, von der Eintrittskante 

ausgehend, eine Unstetigkeitsflaiche, die weiterhin in leichtem Bogen sich 

der Wand nahert und in der Nahe der starksten Kontraktion in eine 

regelmaBige Folge von kleinen Wirbeln sich auflést. Bei der kritischen 

Zahl rollt sich diese Diskontinuititsflache am Einlauf zu gréBeren Wirbeln 

zusammen, die dann in die Stromung gehen. Weiterhin sollte die Frage 

versuchsmaBig entschieden werden, ob die kritische Zahl zu charakteri- 

sieren ist durch eine Beziehung zwischen der im laminaren Profil ent- 

haltenen Wirbelung und der vom Einlauf her in die Strémung getragenen 

Wirbelung. Nach dem vorlaufigen Bericht scheint fiir eine solche Be- 

ziehung eine gute Bestiitigung gefunden zu sein. 

Da die turbulente Strémung selbst wesentlich instationiir ist, so 
koénnen sich die Messungen an einem Orte nur auf zeitliche Mittelwerte 
beziehen. Es ergibt sich dann auf Grund eingehender Versuche, daB 
z. B. das Druckgefalle nicht mehr der durchschnittlichen Stromgeschwin- 
digkeit selbst, sondern einer Potenz dieser Geschwindigkeit, ferner etwa 
dem Rohrradius in einer von der ersten nicht sehr verschiedenen 

') O. Reynolds, Philos. Trans. A, 174, 935 (1883); 177 (1886). 
*) Vgl. L. Schiller, Strémungsbilder zur Entstehung der turbulenten Robr- 

stromung. Verhandl. II. Intern. Kongref fiir techn. Mechanik, Stockholm 1930; 
ferner A. Naumann, Dissert. Leipzig 1931. 
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Potenz umgekehrt proportional wird. Wenn man den Druckabfall auf 
den Staudruck bezieht, so laBt sich nach Blasius die Abhangigkeit von 
Geschwindigkeit, Radius und Zahigkeit durch die Formel darstellen 

IP ‘ v 
(1) se == h . 3 Q Fh . 

; et 64. : : Im laminaren Gebiet ist Li im turbulenten Gebiet etwa bis zu 

Reynoldsschen Zahlen Rw 2-10° 

4 =0,3164 8? 
zu setzen. Hinsetzung dieses Wertes ergibt 

ate 4 
ap, v4 oan 

24 (2) 7 = 0,316 - 

Der Druckabfall erweist sich also im turbulenten Gebiet 

(fir R<2-10°) als der 7/4-Potenz der Geschwindigkeit und der 

5/4-Potenz des Rohrdurchmessers umgekehrt proportional. 

Ks ist der Theorie bisher nicht gelungen, diese oder ahnliche Gesetz- 

maBigkeiten zu rechtfertigen, und das wird einigermaBen verstandlich, 

wenn man die besonderen Verhaltnisse der Turbulenz in Riicksicht zieht, 

bei deren Erforschung ganz andere und vor allem nicht geometrische 

Methoden in Ar-wendung kommen miissen. Man kann aber an Hand ein- 

facher Dimensionsbetrachtungen!) aus der Blasiusschen Grundformel ein 

ideales Geschwindigkeitsgesetz herleiten, dem die wirkliche Geschwindig- 

keitsverteilung in dem besagten Bereich der Zahl R bei vollkommen 

glatten Wanden nahekommt. 

Wir nehmen mit v. Karman an, da v sich in der Form 

s=er(" 0 
darstellen laBt. Fiihrt man dann die an der Wand iibertragene Schub- 

spannung +, und den Abstand »=7o—r ein, so laBt sich fur die tur- 

bulente Geschwindigkeit in Erweiterung der fiir den laminaren Fall giil- 

tigen Beziehung 
v 

v=5-— (2707 — 7?) 
0 2ur 

fiir kleine Werte von 7 eine Entwicklung von der Form ansetzen 

v = f(/OT0N) = fi (QT) 9” + °° 

1) Vgl. Th. v. Karman, Uber laminare und turbulente Reibung, Z. f. ang. 

Math. u. Mech., Bd. 1, 1921, S. 237—241. 



74 Str6mung durch zylindrische Rohre. 

Beschrankt man sich auf das erste Glied der Reihe, setzt die 

Dimensionen links und rechts einander gleich und bedenkt, dal (‘2)2 

und 2 die Dimensionen der Geschwindigkeit haben, so ergibt sich nach 

v. Karman als einzig mégliche Darstellung 

Nun muB v der DurchfluBmenge, to dagegen der 4-Potenz dieser 

Menge proportional sein. Wir haben daher 

1l+z 4 F, 1 

am a ene eke 

mithin als erstes Glied der Entwicklung fir v 

(3) em B(=}" (}' : 

Die Schubkraft an der Wand wird 

1 1 vt 
4 =a | sary ya hi (= > 

4) aS (7) fs oy | 

wobei die GréfBe B eine fiir glatte Wande universelle Konstante bedeutet, 

die noch zu bestimmen ist. 

Dem hiermit dargestellten, bereits von L. Prandtl angegebenen 

Gesetz fiir die Geschwindigkeitsverteilung kommen die auBerordentlich 

genauen Versuche von F. E.Stanton?) sehr nahe (vgl. Abb. 24). Stan- 

ima 0 

fa 5 

2 

ae af if 0 
Abb. 24. Vergleich des Prandtl-Karmanschen Geschwindigkeitsgesetzes fiir ein 

Kreisrohr mit den Messungen von Stanton. (Nach v. Karman.) 

1) Proceedings of the Royal Society London, Bd. 25, 1911, S. 369. 
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ton benutzt zu seinen Messungen feine Pitot-Rohre von 0,3 mm Durch- 
messer, die in die Rohrwand eingelassen werden und Geschwindigkeiten 
in sebr kleiner Entfernung von der Wand zu bestimmen gestatten. 

Abb. 25. Vergleich des erweiterten Potenzgesetzes fiir die Geschwindigkeits- 

verteilung am Kreisrohr mit einigen MeBresultaten. (Nach v. Karman.) 

Wenn wir nun, um die Konstante B zu bestimmen, das durch (3) an- 

gegebene Gesetz bis zur Mitte des Rohres fortsetzen und die gréBte Ge- 

schwindigkeit in der Mitte mit v) bezeichnen, so erhalten wir 

(5) v=w(1—)', 

also fiir die Wandnihe mit der Abkiirzung f= 

y=f- nt a 

Wenn man (3) benutzt und fir ae die Blasiussche Formel an- 

wendet, so kommt 
OPES al = 

BG ag T=wvoro tof. 

Das Verhialtnis der mittleren zur maximalen Geschwindigkeit betragt 

nun nach dem Ansatz (5) 0,816; daher ergibt sich fiir B 

Leon \r Bae (6) B= 2t(,55| 0,816 = 8,57. 
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Einen allgemeineren Wert erhalt man, wenn man statt der Formel (6) 

die den Versuchsresultaten (vgl. Abb. 25) besser angepaBte F ormel 

(7) . me vo( ie (=)")" 

mit » zwischen 1,25 und 2,00 zugrunde legt; alsdann wird B= 8,7, 

und man hat Se 

y\4 8,7(")*(2}F5 ro = 0,0225 ¢ lim,-0|0*(-") | On 

oder mit serene: von (7) 

(8) To = 0,0225 ov ft. 

Auf Grund neuerer Versuche haben M. Jacob und 8. Erk?) fiir das 

Gebiet der Reynoldsschen Zahlen ® > 8-10* bis etwa R= 4-10° das 

Blasiussche Gesetz durch die empirische Formel 

(9a) 1 =0,00714 + 0,6104-R-35 

ersetzt, wahrend L.Schiller?) seine eigenen und verschiedene andere Ver- 

suche durch die den Bereich R = 2-10* bis 2-10° umfassende Beziehung 

(9b) A= 0,0054 + 0,396 -R—-%3 

darstellt. Daraus ergeben sich dann auch fiir die Geschwindigkeitsver- 

teilung héhere Potenzgesetze, die wir hier nicht besonders namhaft 

machen wollen. 

2. Bei anderen Querschnittsformen mu man sich tiber die Kinfiihrung 

einer allgemeinen, fiir jede Profilform angebbaren Liingenabmessung ver- 

standigen. Es erscheint zweckmiafbig, den in der Hydraulik verwendeten 

Begriff des Profilradius bzw. hydraulischen Radius & heranzuziehen, 

der als Quotient der Querschnittsfliche und des benetzten Umfanges zu 

definieren ist: PF 
Ree 

s 

Dieser Linge entsprechend fiihren wir die Reynoldssche Zahl 

v-R 
Rr=— 

Vv 

ein, die beim Kreisquerschnitt dem vierten Teil der oben benutzten Zahl 
vid : F : é =, gleich ist. Es zeigt sich dann, da8 der kritische Wert dieser 

Zahl R;, in erster Anniiherung von der Querschnittsform unabhangig ist. 
Den Druckabfall pflegt man in die Form zu setzen 

- P ov? 

') M. Jacob u. S. Erk, V. D. I. Forschungsarbeiten, H. 267, Berlin 1924. 
*) L. Schiller, Ingen. Archiv 1, 392 (1930). 
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Durch Vergleich mit den friiheren Formeln ergibt sich, daB fiir den 
at Ss : d = one ) 
Kreisquerschnitt R= ri und der Koeffizient yp=z zu wahlen ist. Fir 

die Schubspannung langs der Wand haben wir die Gleichung 

F (pi — 2) = Ty San, 

also 

; Fo eu 
(11) To ex a = FR. — = wo 

Setzt man ferner entsprechend der Gleichung (8) 

C= C.ovtft, 

wo ¢ eine dimensionslose Zahl bedeutet, so ergibt der Vergleich mit (11) 

» (epl\t. 
(12) me ea 

ean 
- R 

Fiir das Kreisrohr haben wir, wenn wir , =~ ri als Reynolds sche 

Zahl einftihren und das Blasiussche Gesetz verwenden, 

”} 1 (13) wos” : © R=! = 0,0559 R- 

Die experimentelle Enlace der Geschwindigkeitsverteilung sowie 

der GréBen f, y und € fiir verschiedene Querschnittsformen ist u. a. 

von Sasvari!) und Nikuradse?) durchgefiihrt worden. Die Werte 

Abb. 26. Isotachen in einem Kanal von dreieckigem Querschnitt. 

(Nach Nikuradse.) 

1) Z. £. d. ges. Turbinenwesen, Baw lal olieesw2 de 

2) V. D. I. Forschungsarbeiten, H. 281. 
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des Koeffizienten C¢, die sich aus dem gemessenen Druckgefalle nnd der 

Geschwindigkeitsverteilung in der Nahe der Wand ergeben, unterscheiden 

sich nur wenig von dem fiir die Kreisform gefundenen Wert. Nikuradse 

fand z. B. fiir den rechteckigen und dreieckigen Querschnitt 

7, = 0,0249; Co = 0,0241. 

Im Bereich sehr groBer Reynoldsscher Zahlen sind die Formel (11) und 

das Potenzgesetz entsprechend den fritheren Aufstellungen zu modifizieren. 

Das gleichfalls von Nikuradse festgestellte Isotachensystem, das in 

der Abb. 27 fiir ein gleichseitiges Dreieck dargestellt ist, zeigt gegentiber 

Abb. 27. Sekundarstr6mungen in einem dreieckigen Kanal. 

dem laminaren Falle eine ziemlich deutliche Abweichung. Wahrend sich 

hier die Kurven nach innen zu immer mehr abrunden und im Bereich der 

Ecken nur eine ziemlich geringe Bewegung herrscht, haben die Isotachen 

des turbulenten Falles eine eingebuchtete Gestalt und lassen auf eine 
Sekundarbewegung in der Ebene schlieBen, itber die Prandt1*) bestimmte 
Angaben gemacht hat. 

Kin besonderer Versuch hat gezeigt, daB die Flissigkeit lings der 
Winkelhalbierenden in die Ecke hinein und zu beiden Seiten aus der 
Keke herausstrémt, also im ganzen eine Doppelwirbelbewegung ausfiihrt. 
Durch diese Sekundirbewegung wird immer neuer Impuls in die Ecken 
hineingetragen, woraus sich die ungewohnlich groBen Geschwindigkeiten 

') L. Prandtl, Uber die ausgebildete Turbulenz. Verhandl. des II. Intern. 
Kongr. fiir techn. Mechanik, Ziirich 1927, S. 70. 
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erkliren. Ahnliche Bewegungen bilden sich an der freien Oberflache von 
Gerinnen aus, die daher nicht als Querschnitt durch eine ebene Strémung 
angesehen werden kann. Wir werden in einer zusammenfassenden Dar- 
stellung der Turbulenztheorie auf diese und iihnliche Verhaltnisse zuriick- 
kommen. 

§ 22. Gas- und insbesondere Luftstrémung in nicht-kapillaren 
Rohren. 

Die Strémung von Luft folgt in nicht-kapillaren Kreisrohren im 

laminaren Gebiet einigermaBen dem Poiseuilleschen Gesetz, wenn wir 

von den kleineren Abweichungen 

absehen. Auch das Verhalten im 7% 

turbulenten Gebiet liBt sich jeden- 

falls in den mittleren Werten der 

Férdermenge und der Geschwindig- 

keitsverteilung verhaltnismaBig ein- 

fach wicdergeben. Stellt man z. B. die 

DurchfluBmengen @ in Abhangigkeit 

vom Druck fiir verschiedene Rohre ggg 

dar (Abb. 28), so erhalt man im lami- 

naren Gebiet gerade Linien, die im 

Anfangspunkt beginnen und bis zum 

kritischen Punkt reichen. Steigert 40 

man die Geschwindigkeit tiber den 

kritischen Wert hinaus, so setzen 

sich die Férderkurven, mit dem kri- 

tischen Knick beginnend, mit schwa- 10 20 30 

cherer Neigung geradlinig weiter Abb. 28. DurchfluBmenge der Luft in 
‘Abhingigkeit vom Druck fiir verschie- 
dene Rohre 1 bis 5 mit den Radien 

1,79; 1,49; 1,29; 0,76; 0,38 cm. 
auf dem zu einem Wert Q» gehorigen (Nach K. W. F. Kohlrausch.) 

Punkt der @-Achse schneiden"). 

Im turbulenten Gebiet ist also jedenfalls eine hohere Drucksteigerung er- 

forderlich, um dieselbe Zunahme der Menge @Q zu erreichen. Der Knick 

kann bei ruhigem Strom auch spiter, d. h. bei einer Geschwindigkeit ein- 

treten, die groéBer ist als der kritische Wert 

; 1040- : 
CO) == me Qo 

fort, und zwar so, daB sich die riick- 

wartigen Verlangerungen angenahert 

1) Vgl. K. W. F. Kohlrausch, Uber das Verhalten stromender Luft in nicht 

kapillaren Rohren. Ann. der Physik, Bd. 44, 1914, 5. 297—320. 
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Jede im Luftstrom hervorgerufene Stérung, z. B. durch Einfiihren eines 

diinnen Stibchens, bewirkt dann aber ein Umschlagen in den turbulenten 

Zustand, wihrend im turbulenten Gebiet die Storung ohne Wirkung bleibt. 

Tragt man ferner die Geschwindigkeit fiir verschiedene Werte r des- 

- selben Rohres in Abhingigkeit vom Druck auf (vgl. Abb. 29), so wird 

auch in diesen Kurven der kritische Druck sich bemerkbar machen, und 

200 r=O7 
09 
17 

160 ; 
v cm/s fh 

| | /# 
120 ; a 

| 14 

80 I | | | 

40 Wi 7 | 7 

—> p Wren? 

saletucwiw! us i ee Et al ioe 

Abb. 29. Luftgeschwindigkeit in einem Kreisrohr yom Radius 1,79 em 

in Abhangigkeit vom Druck. (Nach K. W. F. Kohlrausch.) 

es zeigt sich ferner, daf die Geschwindigkeitslinien im turbulenten Gebiet > 

d.h. nach dem Knick, sich parallel fortsetzen, so daB wir nach Kohl- 
rausch eine Gleichung von der Art 

S v—-v ih (2) —— = const = ks— 
Pp ul 

ansetzen kénnen, wo k, eine Konstante bedeutet. Da im laminaren Ge- 
biet die Geschwindigkeitsverteilung der Formel entspricht 

2v 3 __ mM, 2 2 
(3) i re (nene |G 

9 

A kénnen wir den Wert vy erhalten, wenn wir in (3) die kritischen Werte ee : 4 : 
v und v,, einsetzen. Dann ergibt sich, da der kritische Punkt auch (2) 
genugt, 
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oder da der kritische Druck nach Poiseuille 

Aes 4ulv' 

7k — 72 
ist, 

4k, r2 
Vo = “(1 ——# a 

r2—¢ 

Es ergibt sich daher nach (2) fiir die Geschwindigkeit im turbulenten 
Gebiet der Ausdruck 

2 re ne 
Y= Vo +4 ke pao (1 — ae) Piefee ee 0 

ul ia, 

Benutzt man (3), so kommt 

, (re —r2 pre 

v= 20n( oy — Ahn) + aE 
l 

Wenn man schlieBlich fiir die mittlere kritische Geschwindigkeit den 

Wert (1) einfiihrt, so entsteht die Kohlrauschsche Formel 

(4) re 2 u 1040 (“# — 72 
, 2 
oO ‘9 

4s) + ke ro. 

Daraus leitet sich dann der Ausdruck fiir die Menge Q ab 

WOU tihaey ea er eee 
Q ul 

(5) ga 

Dadurch bestatigt sich die oben hervorgehobene Tatsache, da sich 

alle Q-Kurven in einem Punkt Q=Q,), p=0O schneiden. Der Versuch hat 

nun ergeben, daB 

@o _ 392cm?/s 
"9 

betragt. Es ergibt sich daher mit 

#=185 -107-4¢ ems, op=1,16-10-? gem 

(745 mm Barometer und J?=16° C) 

1040 (1 — 8k) = 780 — ke 

Dabei wurde versuchsmaBig nur die Beziehung zum Druckgefalle und 

Radius bestimmt. Die angesetzte Abhangigkeit von Dichte und Rei- 

bungskonstante miiBte erst durch Anderung der Temperatur bestatigt 

werden. Weitere Einzelheiten, insbesondere versuchstechnischer Art, 

mégen in der Kohlrauschschen Originalarbeit nachgelesen werden. 

Miiller, Theorie der ziihen Fliissigkeiten. 6 
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FUNFTES KAPITEL. 

Ebene Strémung mit geometrischem Potential- 

charakter. 

§ 23. Die allgemeinen Differentialgleichungen des Problems. 

Wir haben zwei Falle von Bewegungsformen der zahen Flissigkeiten 

kennengelernt, die mit den Mitteln der Potentialtheorie behandelt wer- 

den konnen: die Strémung in diinnen Schichten und die von der axialen 

Verschiebung zylindrischer Flachen erzeugte Stro6mung. Man kann sich 

nun weiter mit Hamel?) die prinzipielle Frage stellen, ob es exakte 

Lésungen der Stokesschen Gleichungen gibt, die, obwohl sie selbst keine 

Potentialbewegung darstellen, doch in der geometrischen Beschaffenheit 

der Stromlinien mit einer solchen iibereinstimmen, wihrend die Geschwin- 

digkeitsverteilung, also die Aufeinanderfolge der Stromlinien, einem ande- 

ren Gesetze gehorcht. Hamel geht, um diese Frage zu entscheiden, von 

der bereits bekannten Differentialgleichung fiir die Stromfunktion ¥ einer 

stationaren ebenen Bewegung einer zahen Flissigkeit aus, namlich 

OF 044 Ge Oe an 

Ox Oy Oy O« (1) 

und fragt nach Lésungen YW, die sich als Funktionen von @ darstellen 

lassen, wobei 

Agp=0, AP 

sein soll. Setzen wir 

° : LF prip=fertiy=(@; Gl=nu—im, 
so kénnen wir die Gleichung (1) zunichst auf die Koordinaten gp und yw 

2 Ur 2a . sO A _ OF Ory , ? : transformieren. Bezeichnen wit aght Gus mit A’ Y, so ergibt sich zu- 

nachst, wenn man 

df\2_. 2 Opdw dAgdw 
3 = ice he Ox Oy Oyou 

setzt, 

(2) AE 0 a4 XP. 

) G. Hamel, Spiralférmige Bewegungen ziher Flissigkeiten. Jahresbericht 
der deutschen Mathematiker-Vereinig., Bd. 25 (1917), S. 34—60. 
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Die linke Seite der Gleichung (1) wird daher 

OAT OF AOA OE 

Ox Oy Oy Ox 

= (2% ed ) Op , 0Q4'#) any? vdp 0 tes 
da | Ow dx)\Op Oy | Ow Oy 

-(& oe Loe, 0(Q1' &) a Of Op et 

ac ay dp  dy)\dp ow ' Ow Ox) 
aa QIV)OY AQIS V/AV 

Og a Ow Al 

i (= OF 04 *#)d | op OlgQ or _ Oggo# 

Op Ow Ow Og 1 ae Ow Ow a 

Nun ist 

SUBD oye ee ape 
Gem oee)dal ap 8 de 8 \ oe 

af 
OlgQ 4 0 df|\ _ = 

wenn mit R bzw. J der reelle bzw. der imaginire Teil der Klammer- 

funktion bezeichnet wird. Setzen wir 

BGR 
Oe ve =atib, 

so erhalten wir 

OF”) OE Amz) OF 5 Os FO O4E OF ras 0 0 

Ox Oy Oy O« ay ( Op Ow Ow Og 4 d} Pla mr Wa 

Fiir die rechte Seite der Gleichung (1) erhalten wir 
; : ; 04 FAQ OT £ 0g Fir fri ¢ Se a 

AAFP HOA AE+QAQA # + 20( Op Op Ow aul 
JQ p2(d vi os 8)): — A y be , Leo me =@|44 ee ie ap - Se 

Nun ist 
’ = AQ OlgQ OlgQ . 1gQ=0, “G = (7 2"). (“ Jaa? +82. 

Damit geht die Gleichung (1) tiber in 

OLEOV AAV) OF nif OF ,,O¥ 
Op Ow | Ow “Fe ie Pla Ow ie | 

(2) PS =| ss 84 Fe +b) +2 (GS o Ow )}: 

Wenn wir nun der anfangs gegebenen Bedingung entsprechend 

P= F(@) 

setzen, so gewinnen wir nach (2) fiir F die Differentialgleichung 

(3) F°R'b =v (FIV + F' (a2 +02) +2aF". 
6* 
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Hamel hat nun den Beweis dafiir erbracht, daB die komplexe GroBe 

a--ib, die allgemein eine analytische Funktion von p+ ist, konstant 

sein muB. Dann ergibt sich aber aus 

ad2f 
: dz ze 

atib=2 df 2 Cor he aap Be BEE T6 

dz 

oder mit g—zo.=rei* 

2 a 

(4) P= —Graplaler +09) + po- 

Es folgt daraus, da die Stromlinien y= const und Y= F(p) iden- 

tisch sind mit der Schar der logarithmischen Spiralen; die Str6mungen 

in logarithmischen Spiralen sind die einzigen, deren Strom- 

bild einer Potentialstrémung entspricht. Die Geschwindigkeits- 

verteilung, die im allgemeinen von derjenigen der Potentialstromung 

verschieden ist, hangt von der Funktion F ab, und zwar haben wir fiir 

die radiale und tangentiale Komponente 

OF 7 OG S Dee y= ge FL = KF, (5) rod rod a+ br 

| oF , O— 2a 1 a 
4 —y = ——— ——— sa 5%) oe 
Vg Or Or a2 SE b2 r ’ 

und fiir die Absolutgeschwindigkeit ergibt sich der Ausdruck 

2 le, (a) y= 
Var b37 

Die GroBe der Geschwindigkeit im Abstande 1 von dem Quell- bzw. 

Senkenpunkt r=0 ist demnach proportional der Ableitung von F. Die 

Bestimmung dieser Funktion «w—F” soll im folgenden Paragraphen fiir 

einige bemerkenswerte Spezialfaille durchgefiihrt werden. 

§ 24. Stationiire Quell- und Kreisstrémung. 
T atin. Ai , - : : 1. Wenn wir w=F"’(~) setzen, so haben wir fiir w nach einmaliger 

Integration der Gleichung (3) des § 23 die Differentialgleichung 

(1) wu + au! + (a? +b%)u—.” w+Cc=0. 
aV 

Wenn z. B. b=0 wird, so sind die Stromlinien g@=const = — ae lg r 
a 

Kreise um den Anfangspunkt. Dann ergibt sich als Lésung von (1) 

‘ C 
2) U=——+e-%(A + Bg), a? 
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daher # ee. B 
F= A <<? e424” AiO 

und wegen 

2 (3) p=— pieh 

20 2B, Aa+B Caen 2B (4) CE a rier ye ce (A a Ig7 . 

Da der Druck bei einer Kreisstr6mung zu seinem urspriinglichen Wert 

zuriickkehren mu, so ist B—O zu setzen. Wir haben dann also 

A Cc 2u é 
(5) Og oe ee ee i Te, 

Die Konstanten kénnen etwa dadurch bestimmt werden, da man die 

Geschwindigkeit in zwei Abstanden r=7r, und r=r, festlegt. Wir 

werden spater bei der Betrachtung der Rotation zweier Zylinder in der 

Plissigkeit auf diesen Fall zuriickkommen. Wenn beide Radien 7; und rz, 

unendlich gro werden, so entsteht der bereits in § 9 behandelte Fall 

einer Strémung zwischen zwei parallelen Ebenen, dem eine lineare 

Geschwindigkeitsverteilung entspricht. 

2. Wenn andererseits a=0 wird, so ist die Strémung rein radial, also 

entweder eine vom Punkt z=0 ausgehende Quellstrémung oder eine auf 

diesen Punkt gerichtete Senkenstr6mung. Die Geschwindigkeitsverteilung 

ergibt sich in diesem Falle aus der Lésung der Differentialgleichung 

6 ee Pees u2+o=0, (6) D5 

‘ . jr Ada die auf elliptische Funktionen fiithrt. Setzen wir namlich uw” — oa 2 

so ergibt sich nach einmaliger Integration 

f=V ew — 3vbu? — Tee 

(7) d=)/ Va u) (ez — u) (es — u). 

Da man noch iiber eine Bezichung zwischen a und 6 verfiigen kann, 

setzen wir nach Hamel 6=—2, mithin 

2b 
ae, Fa ary BE 

dann erhalten wir 

(7a) uu = ie View — u)(e2 — u) (es — u) 

mit der Bedingungsgleichung 

(8) €1 + €2 tes = 3vb = — Gy. 
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Um die Weierstrasssche Normalform zu erhalten, setzt man 

= 2 Med e t(F — Fo) , 
u=utby=u—2y, p=I—h=iwyby, Us” ei 

dann wird 

oi = ida — €) (i — 22) — 23), 

wobei die e der Gleichung 

ér tée+e3—0 

geniigen. Mit Einfithrung der Weierstrassschen y-Funktion kann man 

daher schreiben 

(9) w=—2v + g (a2) sats 

wobei %, J2, gg Integrationskonstanten sind. Wenn wir u=F” setzen, so 

wird die Stromfunktion 

y= F(g) = — 2” + ewe 92.95 | dd 
; 5 

10 
( ) C An Cas i(+ — Fo) 

= — 2y3+-1V6vC a ~3 92,93 > 
)6y 

wobei €(z)=—[p(z)dz die zu yy gehorige Weierstrasssche €-Funktion 

darstellt. Die Geschwindigkeit im Abstand r wird: 

O., . Go \ 

(11) ee ee PLT 
‘od / 

Statt der Funktionen mit imaginirem Argument kann man auch die 

auf ein reelles Argument iibertragenen komplementaren Funktionen ¢, ¢ 

einfiihren, die man erhalt, wenn man das Vorzeichen von g, andert oder 

die Wurzeln ¢, &9, ¢, durch —ée3, —é2, —e, ersetzt. Man hat dann die 

Beziehungen 

plix)=— p(x); Fx) =—il (a), 
und es wird z. B. 

(9a) u=—2y (° — *) 
: \6v 

Aus der Bedingungsgleichung fiir die e ergibt sich, da8 mindestens 
ein € einen negativen reellen Bestandteil hat. Wenn wir eine GroBen- 
ordnung der Realteile in der Weise vornehmen, daB 

R(e1) = R(ee) = Rles) , 
so wird 

Ries) = — 2, 
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wobei das Gleichheitszeichen sich auf den Fall bezieht, daB alle drei e 

denselben reellen Bestandteil haben: 

Im folgenden werden wir uns insbesondere mit dem Falle der reinen 
Radialstrémung beschaftigen. 

§ 25. Die freie Queilstrémung in der ziihen Fliissigkeit. 

Setzen wir eine freie Radialstromung ohne feste Wande voraus, 

d.h. eine ebene Strémung, die von einer im Anfangspunkt gelegenen 

Punktquelle oder Punktsenke erzeugt wird, so muf w eine periodische 
27 

Funktion von m sein mit der Periode 2 z oder 3 , Wo ” eine ganze Zahl 

ist. Wenn w zwischen zwei endlichen Extremwerten liegt und w’ reell 

sein soll, so kénnen wir setzen 

2 SUH e4. 

Fiir die Halbperiode haben wir dann 

e1 

[By du 0 
(1) ese a= =n. 

~ JV(e1—%) (€2 —&) (3 —u) ue 
€2 

Mit der Substitution 

U = és + (er — ee) sin? w; x? = ee 
ln — €3 

erhalten wir daraus 
7 

2 —_ 

2 d 2 (1a) 2 [ e =|/; iia: 
Ve —e,,) V1 + #2 sin? wy Vom oll 

0 

Um die Geschwindigkeit abzuschatzen, fiihren wir die mittlere Ge- 

schwindigkeit w,, und die Geschwindigkeitsschwankung 0 ein, setzen also 

Um = 5 (e1 + e2), O=e—ee. 

Dann wird wegen der Beziehung zwischen den e 

(2) es —e3 = 6v+3um—40>0. 

Je kleiner also e, wird bei festem Maximalwert ¢, desto kleiner fallt 

der Unterschied von es und e; aus. Dieser Unterschied vermindert sich 

ferner mit abnehmendem e,. Weiter haben wir 

zu 
2 ——— ——- 

A ni) pune : dw ven". 

Deca ee ete, 7! (yer 
0 
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Fir das elliptische Integral kénnen wir ferner die einfach zu gewinnende 

Ungleichung aufstellen 
ml 

2 

2 2 
7 V1 + #?sin? w J Viana 

0 0 

Mit Kinfiihrung einer positiven Grofe ¢=1 kénnen wir also setzen 

cL 

2 

2 dw Le, SES psy 

Ae V1 + #?sin? wy y1+4 ex? 
0 

und erhalten damit aus (La) 

2 1 pas Ne 
(3) ———— eaveos = as 6y + 3um— 3970 = 67, 

y6r + 3u,,—40(1l—e) WV 6x 

wo n eine Zahl <1 bedeutet. Da ferner das Integral 

z a 

| os = | oY _ _ Wr Sin 1 
JVl-2?sintw J Vl + 249p? = 
0 0 

mit wachsendem x beliebig groB wird, so wird 

lim,+.€=0, lim,,.n=1. 

Aus (3) ergibt sich aber die Ungleichung 

n> 

rae 

Setzt man n=—1 als Kleinstwert von n, so wird der Mittelwert von wu 

Um > —2r(1 == 

. 
3 

Une > VY - 

Man sieht also, dal} die Ausstromung und die Einstrémung sich ganz 

verschieden verhalten. Wahrend die mittlere Ausstrémungs- 

geschwindigkeit unbeschrainkt wachsen kann, wird die Ein- 

stromungsgeschwindigkeit erheblich und um so mehr ein- 

geschrankt sein, je kleiner die Zihigkeit der Flissigkeit ist. 
Ks ergibt sich ferner aus der Ungleichung (1c), daB bei gegebenem n die 
Schwankung 6 mit w,,, bei gegebenem 6 die Zahl n mit w unbegrenzt 

wachsen mub. 

§ 26. Radialstrémung zwischen ebenen Wiinden. 

Wenn wir zwei feste Wande, etwa fiir 9=0 und #=— %, haben, so muB 
die Strémungsgeschwindigkeit w an diesen Wiinden gleich Null sein. 
Nehmen wir zunachst Ausstrémung an, also 0 = u= e,, Res) = 0, so wird 
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(1) = Veh au oe 
: 0 V(eq — &) (Ww? — (€ +5) w+ ey es) 

Es ergibt sich dann auf Grund der Beziehung zwischen den e, daf 
U?— (ey €3)U+enes bei gegebenem e; alle Werte von u2—(e,+e3)u bis oo 
annehmen kann, daB also 

ey 
e 

(2) a=2yy] = Ue <2y/ te 
Re Vien — U) (u? —u (€, + €s) + &€s) 2 V(e,—wu(wt+e, +67) 

ah 0 

SY oa facies ae 
a 2a | 2e,(l+2) +12” (0<e<]) 

gilt wegen 2 

[= 2 
JV(e-wu 
0 

Man sieht also, dais beim Ausstrémen die Weite der Wandéffnung 

durch den GroBtwert e, der Geschwindigkeit beschrinkt ist, und daf bei 

kleiner Geschwindigkeit und groBer Zahigkeit das Maximum der Offnung 

nahe bei a liegt und mit wachsendem e, unter alle Grenzen sinkt. 

Bei einer Winkeloffnung <z ist ein Ausstrémen nur bis zu einem 

gewissen Maximalwert von e; méglich. Wenn die AusfluBmenge diesen 

Grenzwert tiberschreitet, so wird wahrscheinlich ein Ablésen des Strahles 

von den Wanden stattfinden. 

Eine ahnliche Diskussion, die allerdings andere Resultate ergibt, laBt 

sich fiir den Fall der radialen Einstrémung (e, =u= 0; alle e reell, 

€o, €3 <0, e: > 0) durchfitihren. Man hat dann 

0 

(3) aye yee], et Bee 
J V(w =p) (— uw? + (6; + es) — & 5) 
& 

und es zeigt sich, dafi bei maximaler Einstrémungsgeschwindigkeit 

groBer als 3y, jede Winkeléffnung 0, méglich ist und da auch bei einer 

groBten Einstrémungsgeschwindigkeit <3 v die Winkeléffnung jede Grobe 

bis a erreichen kann. 

Die weitere Diskussion, namentlich auch der erzwungenen Bewegung 

in logarithmischen Spiralen, die einige mathematische Schwierigkeiten 

bietet, mége in der zitierten Arbeit von Hamel nachgelesen werden. 

Eine Erweiterung der Hamelschen Uberlegungen, die von Oseen') 

1) O. W. Oseen, Exakte Lésungen der hydrodynam. Differentialgleichungen, 

I, Il. Arkiv f. Matem., Astr. och Fysik, (A) 20, 1927, Nr. 14, Nr. 22. 
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stammt, besteht darin, zur spiraligen Grundstrémung eine normal ge- 

richtete Zusatzstromung hinzuzuordnen, die entweder nach auBen oder 

nach innen gerichtet ist. Die dadurch entstehenden, recht mannig- 

faltigen und komplizierten Stromungsformen haben aber, wie es scheint, 

nur eine geringe praktische Bedeutung. 

SECHSTES KAPITEL. 

Instationiire Bewegung der zihen Fliissigkeit. 

§ 27. Eindimensionale instationiire Fliissigkeitsbewegung. 

Wir haben in §9 die laminare Flissigkeitsbewegung betrachtet, die 

erzeugt wird von einer ebenen Wand, die in ihrer Ebene mit einer kon- 

stanten Geschwindigkeit in der x-Richtung verschoben wird. Wenn die 

Bewegung nicht mehr gleichmaBig erfolgt, so wird auch die Flissigkeits- 

bewegung instationir ausfallen, und die Geschwindigkeit v,—v geniigt 
3 

a =( wird, der dann unter der Annahme, da der Druck konstant, also 3 

Gleichung 

(1) ——it aie 

a SIO 

Die Gleichung fiir v geht also in die Gleichung der eindimensionalen 

Warmestrémung iiber, wenn man v durch die Temperatur @ und y» 

ae 

k ‘ es oa . : : : 
durch ar ersetzt, wobei k den Koeffizienten der Warmeleitfahigkeit, 

c¢ die spezifische Warme und @ die Dichte des Materials (des Stabes) be- 

deuten. Die fiir diesen Fall von Fourier u.a. gefundenen Lésungs- 

methoden kénnen daher ohne weiteres auf den vorliegenden Fall der 
zahen Strémung itibertragen werden. 

1. Wenn z. B. die Ebene z=h sich mit einer dem Ansatz 

— It 
U= Ue 

entsprechenden abnehmenden Geschwindigkeit bewegt, so setzen wir 
— It 

eS ay (2) 

und finden fiir f(z) die Differentialgleichung 

df o 
an (2) , 

woraus 

lg . 4 
je=a cosz|/ oat bsinz | : 
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also fiir v der Ausdruck 

(2) p=e”? (« cosz|/— +6 sine?) 
y y 

folgt. Wenn eine feste Ebene im Abstand z=h gegeben ist, so findet 
man also 

Qos b= —wwetgh|/—, 

mithin a 

Up sin (hk —z) \e 

3) v= epee 
; le 

sinh |/ — 
4 

Man sieht also jedenfalls, daB die verzégerte Bewegung der Ebene z=0 

sich derart auf die Fliissigkeit iibertragt, da die Geschwindigkeit bis 

zur festen Wand z=/ nach einer Sinuskurve abnimmt. Die Reibungs- 

spannung wird 

(4) Taz = — Uo Judo ee eer ae 

sinh|/* 

Fir die bewegte und feste Ebene erhalten wir daher 

at ole eee 

(5) (seo =— wo Jweetgh|)/ “e ee (Trgean = Uo VUTO ae 

sinh |/ 

Der Reibungswiderstand an der bewegten Ebene verschwindet also fiir 

‘ i} 
h=(n+3)0|/4 (1=0,1,2,...). 

Man sieht ferner, dal} die Reibung an der beweglichen Ebene beschleu- 

nigend bzw. verzégernd wirkt, je nachdem 

(n + al <h<n = ye)” oder na” <h< (mn + Md Ie 

ist, daB dagegen die Reibung an der festen Ebene, die tibrigens niemals 

verschwinden kann, positiv oder negativ wird, je nachdem / den Inter- 

vallen : 

nal <h< nt Val! % oder Qn + ixl/Z<h<2n+ Vals 
angehort. 

2. Wenn dagegen die Geschwindigkeit der Ebene z=0 nach dem 

Exponentialansatz 
u=we't 
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zunimmt, so haben wir die allgemeine Lésung 

: $ . .1/s 
(6) pe? (aGofe|/? +0Sins] a 

Die Bestimmung der Konstanten auf Grund der Grenzbedingungen 

fiihrt dann zu dem Ausdruck 

[9 
Sin(h— »)|/ Sr 

(6a) Dy Ot my 
/ a 

Sinh| pes 
Vv 

Wenn die Fliissigkeit im positiv-unendlichen Abstand von der be- 

wegten Ebene z=0 in Ruhe ist, so wird 

a ; S / g, G a 

(6b) Ur = Ue" t [oz] - a Sinz] A =me | ye 

Die weitere Diskussion bietet keine Schwierigkeit. 

3. Periodische Bewegung. Wenn die Geschwindigkeit wu der Ebene 

z=0 dem einfachen periodischen Gesetz folgt 

Uu = Uo sin Ht , 

so wahle man 

v = f(z)sin Yt + g(z)cos Ft. 

Dann fiihrt die EKinsetzung in die fundamentale Differentialgleichung zu 

der Beziehung 

O29 

02 
ct Jt + cos wt] - 

: C « POW = Bales Cer ae 
Ifcos It — gdsin dt =) } 

Wenn man hierin die Koeffizienten von sin #@¢ und cos Jt einzeln Null 

setzt, so ergibt sich, daB die Funktionen f und g dieselbe Differential- 

gleichung 
d3 iit ge? 

(7) vat 
erfiillen. Die Lésung setzt sich also linear aus den vier partikularen 
Loésungen 

esi! i) Re +- aN as . Na 
eee ee te 2 ett p=| 

avV 

zusammen. Wenn wir trigonometrische Funktionen einfiihren, kénnen 
wir setzen 

f = a,e?* cos (Bz + w) + bie °* cos(Bz + fp). 
vy af sae 

g= — 5 gaa Heh sin Be + y) —die-P*sin Be + g) 
und erhalten dann 

(8) v = ae? sin (It + Bz + W) + bi e— F* gin (Ft — Bz—@). 
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Damit die Geschwindigkeit v fiir z—0 den Wert w, sin Pt annimmt, mu 

Uo Sin gp — __-& sinw 

sin (p+ w) ’” sin (p +w) 

gesetzt werden. Die endgiiltige Lésung wird daher 

U, : eee ; eee? 5 (Sa) 0= Sn (pty) Sinpel*sin(It+ Bz+ y)+sin We P*sin(It—Bz—@)]. 

a) Wenn die Fliissigkeit an einer festen Ebene z=h haftet, so er- 

geben sich fiir die noch unbestimmten Werte w und p die Beziehungen 

sin2ph 
(9) SUAS eo 2Bh p= —( +282). 

—cos2sh’ 

Die weitere Diskussion, insbesondere die Bestimmung der Tangential- 

spannungen an den beiden Ebenen z=0 und z=h, mbge dem Leser 

tiberlassen bleiben. 

b) Fiir den Fall, daB die Fliissigkeit im Unendlichen in Ruhe ist, 

wird g=0, und wir erhalten dann 

(10) = up e— °* sin (Ft — Bz). 

Diese Gleichung bringt zum Ausdruck, wie die Tangentialschwin- 

gungen der Lamelle z=0 sich als eine transversale Welle in das Innere 

einer unendlich ausgedehnten Flissigkeit fortsetzen. Die Fortpflanzungs- 

geschwindigkeit ist gleich >| Wie der Exponentialfaktor zeigt, nimmt die 

Amplitude sehr schnell ab. Da die Wellenlange durch A—"* dargestellt 

ist, so sieht man, daB sich die Amplitude nach einer Schwingung im 

Verhiltnis e 1 = sa35 Verringert hat. Wenn man fir f den oben 

notierten Wert einsetzt, so ergibt sich fiir die Wellenlange, die gleich- 

zeitig ein MaB fiir die Tiefenwirkung der Zahigkeit angibt, der Ausdruck 

\z 
(11) = (4 TC « =| 

oder bei Einfiihrung der Schwingungsdauer 7’ der Lamelle 

(11a) A=V4auvyT. 

Die Wellenlange ist also der Wurzel aus der Schwingungs- 

dauer proportional. - 

Fur Luft erhalt man /4,=1,28 7, fiir Wasser /,,=0,47 V7. Man er- 

kennt daraus jedenfalls, daB der EinfluB8 der Zaihigkeit sich nur auf eine 

kurze Entfernung von der Oberfliche des schnelle Schwingungen aus- 

fiihrenden festen Korpers erstreckt. 
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Die erzwungenen Schwingungen kann man mit beliebig vielen Normal- 

schwingungen iiberlagern, die mit den Bedingungen des Problems ver- 

triglich sind. Wir wollen im folgenden Abschnitt ein zusammengesetztes 

System dieser Art aus der Forderung ableiten, daB fiir den Zeitpunkt 

1=0 eine bestimmte Geschwindigkeitsverteilung vorhanden sein soll. 

§ 28. Das Fouriersche Problem fiir die zihe Strémung. 

Nach dem vorigen Paragraphen wird die ‘Grundgleichung 

Ce 
(1) Ot” dz 

durch das partikulaire Integral 

5 Vas —virt 
v =(Acosiz+ Bsindzje a 

erfiillt. Wir erhalten also auch eine Lésung in dem zusammengesetzten 

Ausdruck 
: - —vit 

(2) v= = (A;coshz + Bysindzje git 

Fir ¢=0 ergibt sich 

v= »(A,coshz + Bysindz). 
& 

Wenn wir also fiir die Zeit t=0 eine bestimmte Geschwindigkeits- 

verteilung vorschreiben, so haben wir die Koeffizienten 4; und B, nach 

der Fourierschen Methode zu ermitteln. 

Diese Methode besteht im folgenden: Ist die als stiickweise stetig 

und stiickweise stetig differenzierbar vorausgesetzte Funktion f(z) im 
Bereiche 0 =z=a definiert, so liBt sie sich, je nachdem man sie als 
ungerade oder gerade Funktion (mit der Periode 2a) fortsetzt, durch 
eine Sinus- oder Kosinusreihe darstellen, also im ersten Fall durch eine 

Reihe von der Form 

fe) = Bisin = + Brsin=224 =. ., 
wo die B,, durch die Integrale 

a; “ - MTZ 
Bn = a | f@sin’ a a 

0 

bestimmt sind. Ist die Funktion dagegen in dem Bereich —a<z<a 
definiert, so liBt sie sich unter derselben Voraussetzung in der Form 
darstellen 

f(2) = Ao + > Ancos— ih > Bm ate NS 

a 
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wo 

; +a ie ae 
aa ; 8 Mm ; bs My ee ty DDR! 

Ao = va fades Lblign = alt) cos ~~ oe Bra = aft) sin sae 

—a —@ 700) 

zu setzen ist. Zusammenfassend erhalten wir dann 

+a 

f(z) = Ao + = [ileveos PES 
m—1 

a 

Wenn a@ unendlich wird, also das Definitionsgebiet der Funktion nach 

der einen oder nach beiden Seiten der Ebene z= 0 ins Unendliche geht, 

so laBt sich die Summe der Integrale in der Entwicklung von f(z) in 

Doppelintegrale verwandeln. Der strenge Beweis fiir die Giiltigkeit dieser 

Fourierschen Integrale, wie auch der Fourierschen Reihen moége in 

der einschlagigen Literatur) nachgesehen werden. Man erhalt dann 

| fur O62 =< 00 f(z) == [dasindz | f(osindade 

“0 
(3) } co + © 

| fur —co =< 2=< 00. j(2)= J, [di flocosde —a)da, 

0, = 
co ap C2 

unter der Voraussetzung, dal die Integrale | fede, bzw. | Hoda 
a cee 

absolut konvergieren. 

Dann gentigen nach (2) fiir ¢>0 auch die beiden Doppelintegrale 

(oe) (eo) 

(4) i = = [sin lze-**tai | f(@sinhada (0<z< 00) 
; i 

und 

© +0 
(5) V2 = —fe-*aa [f(o) cosA(z— a)da (— co <z< 00) 

; eF 
der Differentialgleichung (1) und erfiillen auferdem die Grenzbedingung, 

fiir t=O in die vorgegeben gedachte Verteilungsfunktion /(z) iberzugehen. 

Durch Ausfiihrung der Integration nach A (fiir > 0) erhalt man 

p Va nite= a) 

(6) fe-#**coske — add = —=-@ 4y¢ 
i 

1) R. Courant-D. Hilbert, Methoden der math. Physik, Berlin 1931, S. 58f., 

65f.; H. Schmidt, Theorie der Wellengleichung, Leipzig 1931, 8. 38—44. 
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und 
co oo a2 

(7) fe-P 'sinizsinded = 7 cosA(z—a)e—” "td d—F [cosa (gto)e “dA 
ed 

0 0 0 

a (| =o — setoe ae 
4150 

Sinp—e 4yt 

Wie man leicht zeigen kann, sind die Ausdriicke 
(zg =a) 

Wi9=——e 4rt 

partikulire Integrale der Differentialgleichung (1). Wir hatten daher 

auch von einer Summe oder einem Integral der Funktionen w ausgehen 

kénnen, um die allgemeinen Bedingungen zu befriedigen. Setzt man die 

Werte (6) und (7) in die Lésungen (4) und (5) ein, so ergeben sich folgende 

Werte fiir v, und v, 

1 je ea Oe mies SF 
(8) V1 = {te c 4vt —e  49t |da, 

2) vt. 
0 

1 ~ (g—«@)? 

9 ip = —| (a)e 4vt da. 
8) 2) art i 

Im folgenden werden wir einige bemerkenswerte Anwendungen dieser 

Gleichungen geben. 

§ 29. Anwendungen der Fourierschen Formeln. 

1. Plétzliche Bewegung der Grenzebene z=0 mit konstan- 

ter Geschwindigkeit. Wir betrachten eine von z= 0 bis z=oo aus- 

gedehnte Flissigkeit, anfangs zur Zeit t=0 in Ruhe, die durch eine 

plotzlich einsetzende tangentiale Verschiebung der begrenzenden Ebene 

z=0 mit der konstanten Geschwindigkeit wz» in Strémung versetzt wird. 

Die entsprechende thermische Aufgabe bezieht sich auf die Bestimmung 

der Warmestromung in einem Korper, der anfangs die Temperatur 0° 
hat und mit seiner ebenen Grenzfliiche einen anderen Koérper von der 
Temperatur #° beriihrt. Setzen wir in dem im vorigen Paragraphen 
entwickelten Ausdruck fiir 7, 

f(a) = uo 

und subtrahieren wir ihn von wo, so ergibt sich die Lésung 

Cc 7 ee. ise hee 

a ee Je s9ts dO (ere dit dc | 
2)\unt \. 

0 0 
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die in der Tat die vorgeschriebenen Grenzbedingungen erfiillt. Die beiden 
‘ . . S Pies is a Integrale lassen sich nun in folgender Weise zusammenfassen. Setzt man 

: t nt I Ziel . “a a+2 ee im ersten Integra a! 1m zZweiten ——-=gq, so erhalt man 
2) vt 2)vt 

+ ES a 

fo} 2Vr Q2Vvt 

= Uo j—* fe-rag] O 

Vx, 
2 co 0 

Die Funktion ; 

ain 
F as — wile avail ak mad 

6 

spielt in der Wahrscheinlichkeitsrechnung als sogenanntes Fehler- 

integral eine grundlegende Rolle und ist sehr genau tabuliert worden}). 

Es gilt die bestandig konvergente Reihenentwicklung 

7) Nee ee 02 

Pole) = (7 113 7 265 Ar 

Fir groBe x haben wir dagegen 

ly Pare 1 1-3 
PGA) = a a SSR NOT CL e al 

Man sieht aus dieser Darstellung, dai die Grenzbedingungen erfiillt 

sind, d.h. die Geschwindigkeit fiir f=0 itiberall verschwindet und fiir 

eine noch so kleine, aber von O verschiedene Zeit t=e auf der Flache 

z=0 den Wert v=w, annimmt. In der beigegebenen Abb. 30 ist der zeit- 

liche Verlauf der Geschwindigkeit v fiir die verschiedenen Abstande z von 

der beweglichen Ebene, und zwar fiir die Zihigkeitszahl »—0,01 cm?/s, 

wie sie etwa fiir Wasser zutrifft, zur Darstellung gebracht. Man erkennt 

aus dem Diagramm deutlich, wie die momentan einsetzende Bewegung 

sich auf das Wasser tibertragt. 

Bei der Bewegung erfahrt die Ebene einen Widerstand, der pro 

Flacheneinheit den Wert hat 

Ov f ‘ue 
= —— Up |/ —? 

fae, o| mt 

also anfangs einen theoretisch unendlichen Wert besitzt und weiterhin 

1) Vg). etwa E. Czuber, Wahrscheinlichkeitsrechnung, Leipzig 1914, 8. 436, 

437 f. 
Miiller, Theorie der ziihen Fliissigkeiten. 7 
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abnimmt mit der reziproken Wurzel aus der Zeit. Auf diese Formel werden 

wir gelegentlich der Bedeutung der Grenzschichttheorie zurickkommen. 

10 

09 

07 
GY 

ee pe 

10920. 80 S50 6070. 80 0 00 0 

Abb. 30. Ubertragung einer plétzlich einsetzenden gleichférmigen Bewegung der 

Grenzebene z=0 auf eine bis z=oo ausgedehnte zahe Flissigkeit. 

2. Ausbreitung einer ebenen Diskontinuitat oder Wirbel- 

schicht in einer Fliissigkeit. Ganz ahnlich verlauft die Behandlung 

der zeitlichen Veranderung einer mit der Ebene z=0 zusammenfallenden 

Unstetigkeitsflache. Wir haben dann eine von z=—oo bis z=-+00 

reichende Fliissigkeit anzunehmen, und fiir die Verteilungsfunktion 

f(z)= Uo zu setzen, wobei etwa das obere Vorzeichen fiir die positive, 

das untere fiir die negative Seite der Ebene zu nehmen ist. Die Ge- 

schwindigkeitsfunktion wird dann unmittelbar 

(2—«)? (2-- a)? 
e 4rt =) 4t da, 

und wir erhalten nach der oben angegebenen Umformung 

2Vvt 
(2) 2 Uo 

C= e~?dq=wF eats 
al “\9 Vvt 

iY) 

Die Geschwindigkeit wird also unmittelbar durch das Fehlerintegral 
dargestellt, und es ergibt sich ein drtlicher und zeitlicher Verlauf, wie 
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er in der Abb. 31 veranschaulicht ist. Im besonderen berechnet sich 
die Zeit, die vergeht, damit v auf den halben Wert sinkt, aus 

- ee = 4,769 zu t= ar -. Es entstehen daraus fiir Wasser und Luft 
2Vvt i 

die Durchschnittswerte 

ty == Giver. te = Save c 

Die an einer Stelle z zur Zeit t herrschende Wirbelstirke hat ebenso 

wie im vorigen Falle den Wert 

1 dv u 
3 w= == = —— = BU 

2 2 0z 2) vt 

05 

025 

| 

0 25 50 75 700 105 

Abb. 31. Ausbreitung einer ebenen Wirbelschicht (z=0) in der unendlich 

ausgedehnten zihen Flissigkeit (7 =0,01 cm?/s). 

Durch diese Formeln wird die Ausbreitung der Wirbelschicht in der 

Flissigkeit zur Darstellung gebracht. DaB die Anfangsbedingung wirk- 

lich erfiillt ist, ergibt sich aus der Bemerkung, da8 fiir einen von 0 ver- 

schiedenen Wert von z'der Ausdruck (3) fiir die Zeit t=0 verschwin- 

det, und daf das tiber die ganze Fliissigkeit erstreckte Integral 

+ oo “+ 0 22 

: U ae i 
wde=-— Ar LN 

2\avt 
sles — co 

wegen 1 7 
iB ie 
e— “vd se fi te 

| q (04 

— co 

fe 

7 ‘ideale it 
Univ. of Arizona Library 
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den endlichen Wert wo annimmt. Der doppelte Wert 2 ist nichts 

anderes als die auf die Einheitsfliche bezogene Zirkulation oder die 

Zirkulationsdichte. 

Wenn wir die Wirbelstirke in einem bestimmten Abstand z be- 

trachten, so ergibt sich 

Ow uy 49 er ae eee ay ): 
Or “Adak s( 

e 6 = “6 z 

Man erhalt also ein Maximum der Wirbelstarke ftir t= 3— von 

der GroBe Up 

etree 
das im umgekehrten Verhaltnis zum Abstand z von der Wirbelschicht 

steht. Abhnliche Verhaltnisse werden wir bei der Betrachtung eines 

einzelnen (Stab-) Wirbels antreffen, die uns zugleich in die Lage ver- 

setzen wird, Wirbelsysteme von allgemeinerer Art zusammenzusetzen. 

§ 30. Instationiire ebene Spiralstrémung. 

Wir haben bereits im V. Kapitel exakte Lésungen der hydrodynami- 

schen Differentialgleichungen fiir die ebene Bewegung kennengelernt, die 

dadurch ausgezeichnet waren, da} die zugehérigen Stromlinien mit den 

Stromlinien eines Potentialque]lwirbels tibereinstimmen, wahrend die Ge- 

schwindigkeitsverteilung einem anderen Gesetz folgt. Wir wollen jetzt 

eine Ahnliche Untersuchung fiir den instationaéren Fall durchfiihren und 

im besonderen nach freien Str6mungen suchen, die zu einem System von 

spiralartigen Bahnen gehéren, ohne selbst in ihrem gesamten Verlauf 

Potentialbewegungen zu sein. Dabei werden wir uns unter anderem 

auch mit der speziellen Frage zu beschaftigen haben, wie sich die in einem 

Punkt erregte Wirbelbewegung in einer unendlich epee Fliissig- 

keit ausbreitet und aufzehrt. 

Um die Ansiitze méglichst allgemein zu halten, gehen wir aus von 
der Differentialgleichung fiir die Stromfunktion und den Druck. Wenn 
wir Polarkoordinaten 7, pm einfithren, so haben wir 

4) Orr 1 es POE ds TAY 
ot ip 

wo die Operation A die Bedeutung hat 

Vee Us 3 1 = E Lass Jb a) (5) 1 or 

Or Re Ole r? Og? EER OF, r? Og? 

Wir kénnen diese Gleichungen durch einen in g linearen Ansatz zu lésen 
suchen, also durch 

(2) ye rp 

Or og “Op a) =v P, 
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wenn wir mit ¥Y eine noch zu bestimmende Funktion von r bezeichnen ay 
Daraus ergeben sich dann die Geschwindigkeitskomponenten 

(ay 
wolr 27 Or, 

Damit die Geschwindigkeit eindeutig sei, d.h. bei einer Umkreisung 

(3) Ur = 5 Vo a 
2g 
2Qur 

zu demselben Wert zuriickkehrt, muB g konstant sein. Setzen wir =. 7. 
7 

so erhalten wir wegen AW=AY, fiir Y die Tt ferenteieleen ane 

O4¥, 2 OAV, 
=yvAA Py oder 

Ot ry OF 

(4) | O4t,  x-vdAt, PAY, 
Ot r Or” Ort” 

me dP, =—2Qw 
gleich der negativen doppelten Wirbelstirke ist, so lautet die Differential- 

gleichung fiir w 

f Ow z-vd0w pee Ow zx Ow 

(5) Ot or Or ° Or O& ° F Or eee 

Da die Gleichungen linear sind, so hat das Superpositionsgesetz hier 

ausnahmsweise Giltigkeit. Die Druckgleichung lautet 

vd~ le ; 
col ea al Ot d(2 +30] a ee a a OT 
VN 

Daraus ergibt sich durch Einsetzen von (2) 

0 (p 1 A {\ pa ye 04 OF ian 
spe +3"?)= Ag ie oer -(r4 — ne Pe ena ae 

Wenn wir die rechte Seite nach r differenzieren und (4) benutzen, so 

ergibt sich der Wert 0. Es ist also jedenfalls 

(6) é Og 
Damit auch der Druck bei einer Umdrehung um r=—0 eindeutig bleibt, 

muB die Konstante verschwinden, d.h. es wird 

04%, 7 &Y, 
(7) d Or vy Orot 

Fiihrt man noch 

5 +5 108) = konst. 

— AP = 0. 

ein, so ergibt sich fiir V die Differentialgleichung 

ov x\10V_ 107 
(8) on (l 2) oF =F ot 

1) Vgl. G. Hamel, Spiralférmige Bewegung zaher Flissigkeiten. Jahresbericht 

der deutschen Mathem.-Vereinig., Bd. 25 (1917), 8. 501. 



102 Instationare Bewegung der zihen Fliissigkeit. 

die, von dem konstanten Faktor a abgesehen, denselben Charakter 

zeigt wie die Gleichung fiir w. Die Geschwindigkeit gentigt der Diffe- 

rentialgleichung 

Ov 2\ Oe i aah eS CO 

®) pe alteeeelnarella: = eo =r 

a) Wir erhalten nun eine erste Reihe von instationaren Bewegungen, 

wenn wir mit 1+5—-= 2 den Ansatz machen 

V S63" ory (rye 

Dann geht die Gleichung (8) tiber in 

” 1 I 

(10) Vie irre 

die sich mit der Substitution 

lo 

in die Differentialgleichung der Besselschen Funktionen von der Ord- 

nung A 

JJ (s) = 0 
a2 
Ss? 

ur i! , 

Jal Shee Nita Lia 

verwandelt. Wir erhalten daher zwei partikulare Lésungen fiir V in der 

Form 

f / oh y yy i lg \ 

(11) Vi = e-St pt Jy =r) Vo=e tri d_ 3 sata} 

die voneinander unabhingig sind, wenn A keine ganze Zahl ist. 

Haben wir aber z. B. 42=1, so geht die Differentialgleichung fiir v, tiber in 

(12) 2 

O2v 1 dv v ey il 1 dv 

or. r Or r2 Or (a 
rv =a ae | =e on? 

die unmittelbar durch das Produkt 

e-%t. Bi (kr) 

einer Exponentialfunktion von ¢ und einer Besselschen Funktion 1. Ord- 
nung gelést werden kann. Da hier B, und B_, nicht unabhangig von- 
einander sind, mufs man als zweite Lésung eine Funktion zweiter Art hin- 
zunehmen und kann dann als allgemeine Lésung setzen 

(13) v= Le- hi tla (kin) + bi Ny (ker), 

deren mechanische Bedeutung spiter noch genauer untersucht werden 
wird. 



§ 30. Instationire ebene Spiralstrémung. 103 

b) Eine zweite Reihe von Lésungen wollen wir nach Analogie der 
friiher betrachteten geradlinigen Bewegung ableiten, indem wir die 

Variable ror in der Form 

ae Oe Oe Su aN ss oe FB! Va F( Jar i? - F(q) 

benutzen. Mit diesem Ansatz entsteht aus (8) durch eine einfache Rech- 
nung die weitere Gleichung 

(14) pa Coe 

Sie ist in zwei bemerkenswerten Fallen durch eine Exponentialfunktion 

lésbar, wenn namlich entweder 

a=0, B=A—1 
oder 

a=24, P=—(A+)1). 

In diesen beiden Fallen haben wir nimlich 

—i} = 

vr / 1 } / Po+ F + (F + F)=0, 

vr / I / Per (P+) =0 

woraus 

F’+F=0, F+F=0, mithin F’=F, 

also r 

F=e-Ve 4vt 

folgt. Wir haben also die beiden partikularen Losungen 

ye ye 

| Vij=ct*—te 4% und Veertt-at%e 4%t 
(15) ea aes verti? (2+ | ne 

—ch2%e #1; —=cr Va} 20 @ 49t, 

. ° V 1 OV 

aus denen sich die entsprechenden Werte von Daa und =a, 

sowie der Ausdruck fiir die Stromfunktion leicht bilden lassen'). Be- 

merkenswert sind hier vor allem zwei Sonderfalle, die wir etwas genauer 

betrachten wollen. 

a) Wenn A=1 ist, so wird x=0. In diesem Fall haben wir also eine 

reine Wirbelstromung, und die Ausdriicke (15) gehen tiber in 

i v2 r2 

(16) Vice 2: Vo=crt-2e 4%- 

1) Wie man diese zweite Reihe von Loésungen als Integrale von Losungen 

der ersten Reihe darstellen kann, soll spiter gezeigt werden. 
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Sie geniigen der Differentialgleichung 

eV 10V_10Vv 
(17) dr? yr Or» Ob 

wahrend die Differentialgleichung fiir die Wirbelstarke tibergeht in 

O2 w 1 Ow 1 Ow 

Or ror vy Ot (18) 

und die beiden partikularen Loésungen hat 

ee oe c Tee ee 
(19) (i 7° 4vt5 we == (1—ze 4rt, 

die wir im folgenden Paragraphen diskutieren werden. 

B) Wenn A=0 ist, so wird x=—2y. Die radiale Strémung ist also 

nach innen, auf den singularen Punkt r=0 zu, gerichtet. Die beiden 

partikularen Integrale (15) fallen zusammen und stimmen tberein mit 

dem w, des vorigen Falles und mit der bekannten Lésung der Warme- 

leitungsgleichung 

(20) Va—e a, 

durch welche die Ausbreitung der Temperatur bestimmt ist, die von 

einer linearen, stabférmigen bres US herrtihrt. Der entsprechende 

Ausdruck fiir w wird 

(2 1 ) w = 

9 

a Ses 
= 6 Wh. 

Die Differentialgleichungen fiir V und w lauten 

(22) re wee hae 

> Or? r Or. v Ot 

Gen sake L 
; 

V Ow 3 0w 1 Ow 

Or r Or t 

Es wird zunachst unsere Aufgabe sein, den mechanischen Inhalt der 
fiir diese Spezialfalle gegebenen Formeln zu analysieren. 

§ 31. Die Ausbreitung eines Wirbels in einer ziihen 
Fliissigk eit. 

Der im vorigen Paragraphen hervorgehobene Spezialfall A=1, “= 0 
fiihrt im wesentlichen zu der Bewegung einer zihen Fliissigkeit, die 
hervorgerufen wird von einer zu einer bestimmten Zeit im Punkt r—0 
konzentrierten Wirbelerregung. Wegen der Bedeutung dieses Falles 
wollen wir zunachst die in § 30 (19) gegebene partikulire Lésung 

Lao 
(1) wi =e Avi 



§ 31. Die Ausbreitung eines Wirbels in einer zihen Fliissigkeit. 105 

noch auf einem anderen Weg herleiten, der gleichzeitig den Zusammen- 
hang mit der frither betrachteten laminaren Bewegung herstellt. Die 
Differentialgleichung fiir w 

(2) OE =yvdw 

stimmt mit der allgemeinen Differentialgleichung 

dw 
(2a) af = vy Aw 

uberein, wenn darin die quadratischen Glieder »- Aw vernachlassigt 

werden. Da diese Glieder 

aber ohnehin verschwinden, wenn v =0 (und x=0) und w von ~ unab- 

hangig ist, so ist der Ausdruck (1) ein exaktes Integral von (2a), wie zu 

erwarten war. Setzt man nun 

WwW = —:0, 
Vt 

so erhalt man aus (2) die Differentialgleichung 

Ow 1 w [ew 1 Ow 

Ei iar Nee: ae 

Spaltet man diese Gleichung in die zwei weiteren 

Ow Ow | i) vy Ow 

(3) Git ort a oF r Or. 

so sieht man, daB das frither (§ 29) festgestellte elementare partikulare 

Integral der ersten (linearen Warmeleitungs-) Gleichung 

Vig 

-€ Art 

gleichzeitig die zweite Gleichung (3) erfiillt. Wir erhalten daher wieder 

als Integral von (2) 

(la) w= = @ 4t. 

Der Ausdruck la8t erkennen, daB zur Zeit t=0 die Rotation fiir jeden 

von Null verschiedenen Wert von r verschwindet. Nun ergibt sich aber 

fiir die Zirkulation langs eines Kreises vom Radius r auf Grund des 

Stokesschen Satzes 

4 ye 2 

4 Ae = Sapall _ an =r _ =o) : 

0 
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Dehnt man das Raumgebiet bis 7==00 aus, so wird die Zirkulation 

T—82va. Die gesamte Rotation muB also jedenfalls zur Zeit t=0 

im Punkt r—0 konzentriert sein und wir sehen daher, da durch die 

Formel (la) mit a= die Fliissigkeitsbewegung dargestellt ist, die 
Me 

von einem anfangs (fiir t=0) in r=0 konzentrierten Stabwirbel von 

der Zirkulation I” ausgeht. 

Der Wert der Zirkulation zur Zeit ¢ wird 

72 

Teer ak 

wie sich auch durch den Ausdruck fiir die tangentiale Geschwindigkeit v, 

bestitigen laBt, fiir die wir nach § 8 erhalten 

72 \ 
2 ff Ve es ic 

(4) Vo = —|rwdr =5 f aH, vt] : 
a7 

Im ganzen ergibt sich fiir das Verhalten eines linearen Wirbels in 

einer zihen Flissigkeit folgendes?) : 

Der Wirbel, der anfangs in dem Punkt r=0 konzentriert war, breitet 

sich mit der Zeit iiber die gesamte Fliissigkeit aus, wobei, wie die Gle1- 

chung (3) fiir r—> oo ergibt, das tiber die ganze Ebene genommene Wirbel- 

moment denselben Wert behalt. Wenn ¢, von Null ausgehend, unbegrenzt 

wachst, so nimmt die zirkulatorische Geschwindigkeit in einem Punkt 

von o bis zu Null ab, und zwar um so schneller, je gréBer die Zahig- 

keit des Mediums ist. Die unendlich groBe Geschwindigkeit am Anfang 

fallt augenblicklich auf den Wert Null. Die Zeit, die vergeht, bis die 

Geschwindigkeit auf die Halfte ihres Wertes gesunken ist, betragt 

ye yr? 

t ~~ 4y-In2 2,772» 

Sie berechnet sich z. B. fiir Wasser im Abstand r=1,55 em zu einer 

Minute. 

Zu einer bestimmten Zeit hat die Geschwindigkeit langs eines be- 
stimmten Kreises, der sich nach (4) aus der Gleichung 

(5) 1 ee 

berechnet, ein Maximum. Da dieser Abstand 7 proportional mit V yt ist, 
so vergroBert sich also der Kreis gréBter Geschwindigkeit mit der Wurzel 

Q ap 1 ie Pile rr) » Ces ‘al joke 5 aus der Zeit. Die Welle griB8ter Geschwindigkeit liuft demnach vom 

) Vgl. auch C.W. Oseen, Arkiv fdr mat., astr. och fysik, Bd. 7 (1911) 
Hydrodynamik, Leipzig 1927, S. 82. 

> 
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Mittelpunkt nach auBen mit konstanter Flachengeschwindigkeit, d. h. 
derart, dal die einzelnen Kreisflachen sich proportional mit der Zeit ver- 
groBern. In der Abb. 32 ist der Verlauf der Geschwindigkeit V, in Ab- 
hangigkeit von r fiir verschiedene Zeitpunkte dargestellt. Die Kurven 
steigen vom Nullpunkt bis zu einem GroBtwert und nihern sich nach 

dem Abfall asymptotisch der zum Potentialwirbel gehérigen Hyperbel 

Ur: Da der Anstieg bis zu ihrem Maximum angenahert linear erfolgt, 

so verhalt sich die innerhalb des Kreises gréBter Geschwindigkeit liegende 

Fliissigkeit wie ein sich drehender Kern, der sich in dem Make vergro8ert, 

wie seine Rotation schwacher wird. 

10 

jlo 

aly =i 

Patentialwirbe/ 

——> 7 

Abb. 32. Geschwindigkeitsverteilung in der Umgebung eines Wirbels 

in der zihen Flissigkeit (vy =0,01 cm?/s). 

Die fiir einen Punkt 7 berechnete Rotation der Flissigkeit dagegen 

wichst vom Wert Null bis zu einem Maximum, um sich dann asymptotisch 

wieder dem Wert Null zu nahern. Bis zur Erreichung des Maximums ver- 

geht die Zeit r 
(a 

4y 

woraus der GréBtwert der Wirbelung zu 

Sivt-e 
Wmax — th, 

sich ergibt. In der Abb. 33 ist die Rotation in Abhangigkeit von der Zeit 

fiir verschiedene Abstande vom Wirbelzentrum dargestellt. Man sieht, 
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daf im ersten Augenblick die Rotation langsam und dann besonders in 

geringen Abstinden schneller bis zum Maximum aufsteigt. Der Anstieg 

ist um so allmiahlicher, je weiter der Punkt vom Zentrum entfernt liegt. 

Um das Strombild in einem bestimmten Augenblick zu zeichnen, 

bedarf es noch der Stromfunktion, die man durch Integration der 

Geschwindigkeit gewinnt. Es ist 

Ie 7 meas 
P= 5, |ler— [3 € ar: 

oy 

£6 

LY Um das hierin auftretende Integral zu be- 
r : 

rechnen, setze man rope dann wird vis 

ae q 

[re #tar= ; fz e Idq. 

ye 

20} 

18 
Bezeichnet man wie tiblich?) 

16 q 
Ei(—q) =|* 

CO 

+q 

dq, ima. 

so erhalt man also 

P= |ler— 5 Bi(— 7), 

= a 4 
700 200 ae 400 500 600 700 800 900 1000 #00 1200 

Abb. 33. Rotation in der Umgebung eines in der ziihen Fliissigkeit 

sich ausbreitenden Wirbels. 

Man findet auch durch Y die Geschwindigkeitsverhaltnisse be- 

stitigt. Fir die Funktion Hi haben wir bei kleinem Argument g = = 

die Entwicklung fs 

") Vgl. N. Nielsen, Theorie des Integrallogarithmus und verwandter Tran- 
szendenten, Leipzig 1906. 
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B,(— 9) = 0,577216 =Igq—q +555, — - 

= 0.577216 + lgr? —Ig4vt — se Aerie 7 
Wenn ¢ von Null verschieden ist, so wird demnach 

cea le 
Poo = 5 9 lg4rt —0,2886 " 

die fiir ein bestimmtes ¢ nach den Tabellent) der Funktion Hi (q) ge- 
zeichneten ¥-Kurven beginnen in r=0 mit horizontaler Tangente und 
steigen zunachst stairker, dann immer schwicher an. Der Wendepunkt 

Abb. 34. Stromliniensystem aus der Umgebung eines Wirbels 

in der zahen Flissigkeit. 

entspricht dem Punkt gréBter Geschwindigkeit. Wenn man mit den zu 

gleichen Y-Differenzen gehérigen Radien + Kreise um den Mittelpunkt 

zeichnet, so gewinnt man ein Bild von der Geschwindigkeitsverteilung 

in der Umgebung des sich ausbreitenden Wirbels (Abb. 34). 

SchlieBlich kénnen wir noch die Umlaufzeit eines Flissigkeitsteilchens 

auf seiner kreisformigen Bahn berechnen. Wahrend die Geschwindigkeit 

in einem Zeitpunkt nur von r abhingig ist, andert sich die Geschwindig- 
92 

keit mit der Zeit nach einem durch die Funktion e 4't bestimmten Gesetz. 

Nehmen wir r= 1p als konstant an, so kénnen wir fiir die Bahngeschwindig- 

1) Vel. Jahnke-Emde, Funktionentafeln, 1909, S. 19. 
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keit rif setzen, wenn g das die Lage bestimmende Azimut bedeutet. 
dt : 

Wir haben also die Beziehung 
; re 

rs dyp = a 4vt 

ee ) 

Z ( =") 

4vt 
Ct a re l—e }dt. 

‘ rs 2 4 —\ PAVE GANG a a 
Je 40t dt at > : e (7 ie +]—e dq) 

0 [ee] oO 

Ii ( mo } vi Pe 5 as —— ~ 4ut =? 2. US) | 

(7) P = Oar 1 e Sav Bi ( ial 

(7a) an = tl ¢ ie) ay Bil ei ey 

bestimmt, die nur durch graphische Methoden aufgelést werden kann. 

$ 32. Beispiele von Strudelstrémungen. : P 

1. Um ein einfaches Beispiel einer Strudelstr6mung zu konstruieren, 

wollen wir in § 30, (15) A=0 setzen. Dann wird 

72 

, a a ime FI 

fa 2 eee Eade 

und wir erhalten als Gesetz fiir die Wirbelverteilung und die Tangential- 

geschwindigkeit 
= 72 oa 72 

1 1piess = geht cent ae nay (1) W= 5 2 e > Vp =—\l—e : 

Daraus geht hervor, dai das gesamte, anfangs in r= 0 konzentrierte 
unendlich groBe Wirbelmoment mit der Zeit sehr schnell abnimmt und 

fiir ¢{—>oo verschwindet, wahrend die Geschwindigkeit im Ursprung 

wieder momentan auf Null sinkt und fiir t+ 0 lings eines bestimmten 
Kreises ein Maximum besitzt. 

Wenn auch das Anfangsstadium der Bewegung nicht zu realisieren 
ist, so kénnen wir doch die Betrachtung von einem von t=O verschie- 
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denen Zeitpunkt t= t) beginnen, und den fiir t > ty geltenden Bewegungs- 
prozeB mit einer zihen Strudelstrémung vergleichen, die mit wachsender 
Zeit in eine auf den Senkpunkt r=0 gerichtete Radialstrémung iibergeht. 

7 
Abb. 35. Stromlinien einer einfachen Abb. 36. Stromlinien einer einfachen 

Strudelstrémung (Fall 1). ant = (fy, Strudelstrémung (Fall 1). et =) 

Wir erhalten ferner fiir die 

Stromfunktion nach einer Ahn- 

lichen Rechnung wie im vorigen 

Paragraphen 

P= —2yip 

(2) — ; 2a 1 r2 \ ee) 
oder 

(oe (2a) ; Cc : re 

| —galler —35(- 7) 

Wenn man die ¥Y’-Kurven fiir Abb. 37. Stromlinien einer einfachen 

verschiedene Werte von ft bei ge- Strudelstrémung (Fall 1). ea Bi, er 

gebenem c? und y konstruiert, 

erhalt man Spiralen, die schlieBlich bei groBem ¢ in gerade Linien (radiale 

Strahlen) iibergehen. Wir haben in den Abb. 35—37 fiir den Fall c?=2 

je sechs Kurven der drei Stromlinienscharen 4y¢—1,2,4 konstruiert, 

die das Wesentliche der Diskussion erkennen lassen. Die Kurven 

stellen die Integralkurven der auf einen Zeitpunkt bezogenen auf- 

einanderfolgenden Geschwindigkeitsvektoren dar. Um die Bahnlinien 
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der Fliissigkeitsteilchen zu bestimmen, geht man von den Geschwindig- 

keitskomponenten 

dr 2y dg (os (ie | 

Ur Ty ee pee Oe a ae 

aus und findet dann durch einfache Integration der ersten Gleichung, 

wenn dem Wert t=f) der Abstand r=7, entspricht, 

=7= iif 
bale ey 5 

Setzt man dann diesen Wert in die 

zweite Gleichung ein, so ergibt sich 

dp (O- 

dr  r(4vt, +72 — 7?) 
72 

ce —— 

ia ® ~ Arto + r3— 7? = EG 0 i) 

a r(4vt) +75 — 77) 

und daraus durch Integration fiir 

die Bahnkurve des durch die 

Anfangsbedingungen bestimmten 

Teilchens 

a ; 5 se ; ie 
Abb. oe Ea eines Teilchens in lv — peek =e it) 

der Nahe des Senkpunktes bei einer (3) Y 

Strudelstr6mung (Fall 1). ve ee) 2 ( ) ieee 

Dies stellt die Gleichung einer Spirale dar, die unter einem bestimm- 

ten Winkel in den Senkenpunkt einmiindet (Abb. 38). Denn fiir r=0 

ergibt sich 
r2 

4yrt, +r2—7 
(E)p>0=1g( =) + 0577215, 

so dafs in (3) der Klammerausdruck fiir r=0 den Wert 0.577215 erhalt. 
° . 5 A 2 

Die Zeit bis zur Erreichung des Senkenpunktes betragt T= ty) + i : 
=) 

Wenn ¢)=0 gesetzt wird, so wird der Anfangswert der Klammer fiir 
r=ro wegen Hi(—oo)=0 logarithmisch unendlich. Der Punkt bewegt sich 
dann anfangs mit unendlich groBer Geschwindigkeit in unendlich vielen 
immer enger werdenden Windungen um den Anfangspunkt herum und 
braucht zur Erreichung dieses Punktes die Zeit 

Die AbfluBzeit ist natiirlich um so gréfer, je kleiner die Zahigkeit der 
Flissigkeit wird. 
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2. Kin Fall, der einer etwas geiinderten Anfangsbedingung entspricht, 
ist durch 

ye 

4 la aes 
(4) Op ae, © 4y¢ 

gegeben. Dann wird 

a rg =e eA 

und das im Gebiet innerhalb des Kreises mit dem Radius r enthaltene 

Impulsmoment berechnet sich zu 
, 

M;, =9 9] %9dr =470a er — om) ; 

0 

Fiir r—oo erhalten wir also 

M 
M=4nrau, a= , 

4 u 

mithin 
ye 

(4a) Se erey 
% 4mu rt” ‘ 

Wie man sieht, bringt die Gleichung die Ausbreitung eines anfangs 

in r=0 konzentrierten Impulsmomentes zum Ausdruck. Die Strom- 

funktion wird 
M ie 

(5) ee ee ii) —2"9- 

Die Bahnkurve eines Fliissigkeitsteilchens, deren Gleichung sich von (3) 

nur durch das Fehlen des logarithmischen Gliedes unterscheidet, ist in 

der Abb. 39 zur Darstellung gebracht. 

Abb. 39. Bahnkurve fiir eine Strudelstr6mung (Fall 2). 

§ 33. Verallgemeinerungen. 

Die in § 31—32 aufgestellten partikuliren Integrale, insbesondere 

das Integral des Elementarwirbels, kénnen nun dazu verwendet werden, 

um zusammengesetzte Integrale der Bewegungsgleichungen zu gewinnen. 

Dabei ist zu bemerken, daB das Superpositionsprinzip streng genommen 

nur bei Verschwinden der quadratischen Glieder, also insbesondere fiir 

die Falle einer rein zirkularen und einer linearen, nur von einer Koordi- 

Miiller, Theorie der zihen Fliissigkeiten. 8 
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nate abhingigen Bewegung anwendbar ist. In anderen Fallen erhalt man 

durch Uberlagerung unter gewissen Voraussetzungen (z. B. bei langsamer 

Strémung) Niherungslosungen der allgemeinen Gleichungen. Wenn z. B. 

ein Wirbelsystem aus einer kontinuierlichen Folge von Elementarwirbeln 

in den Punkten &, 7 mit der Zirkulationsdichte y (€, 7) aufgebaut ist, so 

ergibt sich 
; (e—§2 + (y—1P 

(1) w=5—;/ rene 40t (asd. 

Bemerkenswert sind nun folgende Grenzfalle: 

1. Ebene Wirbelschichten. 

a) Fiir eine von €=—oo bis €=-+ 00 reichende ebene Wirbelschicht 

(y=0) mit konstanter Dichte y ergibt sich 

: T° @— ty 
w= 4vt S 

872 ll . d 
—o 

2 +0 2 
y s ye . eS se 

= 4 & 

Cae ve fe 4G ds 
= 18) 

Wegen der Beziehung 

a er ee ee 

Je avt aS= avin 
ren bi 

(2) Oa ————— Om 40t, 

ea 
2 “a 

wobei jetzt w») durch + und z durch y ersetzt ist. 

b) Wenn dagegen die Wirbelschicht in €=0 begrenzt ist und bis ins 
positiv Unendliche geht, so erhilt man als Naherungslésung 

co 

y EUS _@=sr 
w= gemree wife 4vt as 

0 (3) 3 
te ; | q y y wen 

=—- =e) Angie = —— Sa evel eee _& 
/ i — 

aug 8) \ayve || 
c : eae ; 

wenn wieder das Fe por ey Meee : : : 
der das Fehlerintegral LF, (z) = e © dq eingefihrt wird. 

7o 
0 

. c) SchlieBlich kénnen wir auch die raumliche Ausbreitung einer beider- 
seits begrenzten Wirbelfliche finden. Legt man etwa die y-Achse durch 
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die Mitte der Spur dieser Flache, deren Endpunkte dann durch €=-La 
dargestellt sein mégen, so findet man fiir die Wirbelstarke etwa fiir x >0 

c+ a xo 

2Vvt 2Vvt 

(4) sae S Cm ad, I: tq SS v GhGp == |1@ 
AnVut ¢ q 

ie oe ie oe +F(@—9 
Sart Qyvt QVvt 

ees F.( “| LFe(5 | +r =), 
16) vt 2) vt 2)vt 2) vt 

wo das negative oder positive Vorzeichen zu nehmen ist, je nachdem 

lw =Sa ist. In der Tat geht der Ausdruck (4) fiir =0 und a<q, da 
der Klammerausdruck den Wert |x annimmt, iiber in 

ay 
VY y 

Wi>0 = 
4Vavt 

Von diesem Ausdruck haben wir aber schon gezeigt, da er fiir y>0 

und t+0 den Grenzwert 5 fiir die Zirkulation pro Flacheneinheit 

ergibt. Die Rotation der Fliissigkeit ist also zur Zeit =O auf die Strecke 

—a=x=-+a,2z=0 beschrankt. Im iibrigen ergeben sich fiir den Aus- 

breitungsvorgang ahnliche Verhaltnisse wie beim Stabwirbel. 

2. Kreiszylindrische Wirbelschicht. 

Fiir eine langs eines Kreises r—=a gleichmaBig ausgebreitete Wirbel- 

schicht haben wir 
27 

ya [ _ (@—acosy)? + 
(y—asinp? 

ae 4vt dg. 
wv Siuvt ‘ f 

0 

Setzt man x=—rcos 3, y=rsin J, so wird 

(2 + a2—2racos(yp = 9) 

w= shea fe 4yt dip 

27 ; 

r+ a? (° racos¢ 
10 a oe = . 

7 é 4vt Je 20t do 

0 
R* 



116 Instationare Bewegung der zihen Flissigkeit. 

Das Integral ist als Besselsche Funktion darstellbar. Wegen+) 

Wied 
Jo(z) = Tole) = — | e089 do 

mu . 

erhalten wir 

Yop 60) w= fhe it Bg) 
In der Tat koénnen wir fiir t—> 0, also fiir groBe Argumente, setzen 

(ra? 
OS) = SS 2 Ant 

rta 4) ratyva 

ya 

Dieser Ausdruck verschwindet, wenn ¢ gegen Null geht. Daher ist am 

Anfang die Rotation w im ganzen Fliissigkeitsbereich gleich Null. Fiir 

das gesamte Wirbelmoment erhalten wir aber 

foe) co 
> 92 + a? Peas 

“7EV a _ ra 
tor fwrdr = ts [re 4vt Io (ssa) er 

vt 

0 0 

woraus sich wegen”) 

der Ausdruck 
oo 

(6) 4afwrdr= 2way, 
0 

d.h. die anfangliche Zirkulation, ergibt. Es bestitigt sich also, daB die 

gesamte Rotation fiir t=0 lings des Kreisumfanges konzentriert ist. 

Wir haben in den Abb. 40 u. 41 den Verlauf der Funktion w(rt) fiir 

konstant gehaltenes r und konstant gehaltenes ¢ dargestellt. Dabei wurde 

a? 1 r 
aS - = b} — —- i\ 

vt T a 

gesetzt. Man sieht, daf die Rotation von der Wirbelschicht r—a aus 

sich nach beiden Seiten ausbreitet. Wahrend die GréBe von w nach 
auBen mit wachsendem r (>a) stets abnimmt, steigt sie im Innern des 

Kreises nach einer gewissen Zeit tiber den Wert an der Stelle r—a hinaus. 
SchlieBlich bildet sich eine Wirbelverteilung heraus, entsprechend einem 
fortgeschrittenen Stadium der Ausbreitung eines Punktwirbels mit 

') Vel. A.Gray u. G. B. Mathews, A Treatise on Bessel Functions, London 
1922, S. 46. 

*) Ebenda, S. 69. 
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a= Uato ee 1, bei der die gréBte Wirbelstarke im Zentrum liest. Fiir 
Qyt 8 8 

einen bestimmten Radius bzw. einen bestimmten Wert von / erreicht w 

ein Maximum zu einer Zeit, die aus der Relation 

(7) a 

zu berechnen ist. Zu einer bestimmten Zeit t dagegen ergibt sich aus 

PAF, 

1,{ 
— = A 
2. 

(7) 
der Radius 7, der der Stelle gré8ter Wirbelstairke entspricht. Die 

Maxima (7) werden mit wachsendem 4 bzw. wachsendem t immer kleiner. 

(8) 

Die Maxima (8) gehdren zu Stellen im Innern des Kreises r=a, A=1. 

5 — 

Y 5 

3 

any 1 

1 - 

Z, 
UV 

j 
eee 4 — 

——— 4 6 8 10 1 
ie 

ace 

Abb. 40. Ausbreitung einer kreiszylindrischen Wirbelschicht 

(w(r,t) bei konstanten Werten von = = 4). 
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7 2 3 Z 
Abb. 41. Ausbreitung einer kreiszylindrischen Wirbelschicht 

(wer, t) bei konstanten Werten von t = <r): 

Die Geschwindigkeitsverteilung ist fiir =t—0 identisch mit der Ver- 

teilung in der Umgebung einer idealen kreisférmigen Wirbelschicht. Im 

auBeren Gebiet ist 
ya 

Vi>0, r>a = p 

Im Innern des Kreises r=a dagegen ist die Geschwindigkeit tiberall 

gleich Null4). Um diese Anfangsverteilung auch analytisch zu zeigen, 

kann man die Geschwindigkeit zuniichst aus der Wirbelverteilung ab- 

leiten. Man hat 

(9) j=  [wrdr =r (sa)ar, 

) Vel. Wilh. Miiller, Wirbelschichten und Zirkulation, Z. f. techn. Physik 
10 (1924), S. 450—45s8. 
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woraus mit der aus der Theorie der Besselschen Funktionen bekannten 

Relation?) 
co r+ a2 
7 —A2yt i , arse = 

[de In (hr) In(haydd = ye ave Inf)» 

Ff 2y 

die Beziehung 

y= [dd [ri0°*"' Fo(hr)Jo(hadr 
6 0 

folgt. Nun ist aber bekanntlich 

a 7 eee rhJo(hr) = [rJa(dr)]; 7 [PA To(brdr = Uae 
0 

und wir erhalten also die Darstellung 

(10) v=yafe “"Ii(hr)Jo(ha)da. 
0 

Die Gleichsetzung der beiden Ausdriicke fiir v liefert einen speziellen 

Fall einer zuerst von Sonine?) abgeleiteten Formel. Da ferner?) 

] 2 r 
és a fiir ey 

eer emer PAO GIS 5; fiir 7 =1, 

Ou fire 1 
a 

ist, so gentigt dieser Ausdruck in der Tat den gegebenen Anfangsbedin- 

gungen. 

Es mag noch darauf hingewiesen werden, da wir die Geschwindigkeit 

aus einem sehr allgemeinen Satz ableiten kénnen, der auf der Darstellung 

einer willkiirlichen Funktion durch Besselsche Funktionen beruht und 

mit dem friiher entwickelten Fourierschen Theorem eng verwandt ist. 

Aus der allgemeinen Form der Funktion v 

v= Set Od) Ii (Ajr) 

14Bt sich nimlich ebenso wie friiher aus der Fourierschen Reihe eine 

Integraldarstellung gewinnen, die ohne weiteres einer vorgegebenen 

Anfangsverteilung anzupassen ist. Wenn 7; und r2 irgendwelche positive 

Werte fiir den Radius 7 bedeuten und @(r) eine Funktion, die stetig 

1) Gray und Mathews, a.a. O., S. 68. 

2) N. Sonine, Recherches sur les fonctions cylindriques et le dévelloppement 

des fonct. continues en séries. Math. Ann. Bd. XVI (1880), 8. 53. 

3) Gray u. Mathews, l.c., 8. 78. 
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oder stiickweise stetig ist und endliche Unstetigkeiten besitzt fiir alle 

zwischen 7; und 7, liegenden Werte, so wird das Doppelintegral 

om +[O¢ + 0) + OG —0)) tir rr 7 = Fa 
[dd [LePONLQIiArdo =) 0 firm >r> re 
0 on | 1 @D(r+ 0) baw. $P(r—0) fiir r= 11 baw. re. 

Dann ist die unserer Differentialgleichung geniigende Geschwindigkeits- 

verteilung, die fiir t= 0 der Funktion @ (0) entspricht, fiir irgendeine 

Zeit dargestellt durch den Ausdruck 

a ee le ; 
v =| I oa LoP(o)Ji(Ao)Ji(Arjdo. 

0 ri 

Da in unserem Fall fir {=0, r>a, v =<? und fir r>0 und <a 

3 z ay 
v=0 wird, so haben wir 77>=a4, ro=cO, P(r) = = zu setzen und er- 

halten dann den Ausdruck 

co co 

v=ay[difie “"' Ii(Ledildrde. 
0 a 

Wenn wir die Integration nach o ausfiihren, und beriicksichtigen, 

daB J fir unendlich groke Argumente verschwindet, so reduziert sich 

das Integral auf die unter (10) gegebene Form. Wenn a0 wird, so er- 

halten wir wieder den Fall des Punktwirbels. Benutzt man den dafiir 

gegebenen Wert fiir v, so ergibt sich die Beziehung 

ae wer = 

(11) je-#" nah =2(1—e wt), 
0 

Auf die Auswertung des allgemeinen Geschwindigkeitsausdruckes, die 

mit einfachen Mitteln nicht erreicht werden kann, wollen wir an dieser 

Stelle verzichten. 

SIEBENTES KAPITEL. 

Ziihe Strémung in der Umgebung geradlinig bewegter 
fester Kérper bei kKleinen Reynoldsschen Zahlen. 

§ 34. Langsame stationire Strémung um Kreiszylinder. 
1. Das Problem der zihen Fliissigkeitsbewegung, die von einem ein- 

getauchten geradlinig bewegten Koérper verursacht wird, ist besonders 
im Hinblick auf die Widerstandsbestimmung von praktischer Bedeutung. 
Da aber die Differentialgleichungen der Bewegung nicht linear sind, also 
das Prinzip der Superposition hier streng genommen nicht mehr giltig 
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ist, so wird es im allgemeinen auferordentlich schwierig sein, die Grenz- 
bedingungen zu erfiillen, die einer vorgegebenen Kérperkontur ent- 
sprechen. Um jedenfalls eine erste Annaherung an die wirklichen Ver- 
haltnisse zu erreichen, erscheint es zweckmafig, zunichst nur kleine 
Geschwindigkeit oder groBe Zaihigkeit, d.h. also Kleinheit der Reynolds- 
schen Zahl, vorauszusetzen und dementsprechend die quadratischen 
Glieder der Gleichung, also die Beschleunigungs- oder Trigheitsglieder, 
ganz zu vernachlassigen. Man erhilt dann das Gleichungsystem 

(1) “Pp=vdo. 

Wir wollen hier diese Gleichungen nicht direkt integrieren, sondern 

von der Wirbelgleichung bzw. der Gleichung fiir die Stromfunktion aus- 

gehen und eine Methode entwickeln, die auch fiir das zugeordnete 

elastische Problem von Bedeutung ist. Wenn wir annehmen, da die 

Strémung stationar und eben ist, d.h. in allen Ebenen parallel der xy- 

Ebene den gleichen Verlauf hat, so erhalten wir, wie oben gezeigt ist, fiir 

den Wirbeltransport und die Stromfunktion die Gleichungen 

OF OAL OF O4¥ 
(2) vYw=Vvdw; WANES i A EP Ee 

J 

die bei Vernachlassigung der quadratischen Glieder tibergehen in 

(2a) A=) 5 AA P= Oe 

Es ergibt sich also, daB im Falle der langsamen Strémung die Kurven 

gleicher Rotation Potentiallinien sind. 

Zur Integration der Gleichung fir Y, auch im allgemeinen Fall, 

koénnen wir nun komplexe Hilfsvariable einfiihren'), indem wir setzen 

atiy=2, e—ty=2z; ©=Ze+2), y= ee). 

Dann transformieren sich die Operationen in w und y in folgender Weise: 

0 OOpe OO es way © i) ) es me 
c= On Oz 1 Oy ae = 3 : set tay) 

Oe? if oO Gk aa 
ree: $35) 

Ov dw Ov dw ee eee 
Oz OZ 02 dz %\0x dy dy Ox 

02 Ox ~ By 2 

1) Vgl. E. Goursat, Sur léquation 144u4=0, Bulletin de la Soc. math. de 

Fr., XXVI, 1898, 8. 236—237; ferner fiir das vorliegende hydrodynamische Pro- 

blem R. A. Frazer, On the motion of circular cylinders in a viscous fluid. Philos. 

Transactions of the Royal Soc, London, (A), Vol. 225 (1926), S. 93 ff. 
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Die Gleichungen (2) kénnen daher ersetzt werden durch 

er 
A ae 

(3) | 2 Oe y Ow NOP oe | 

“Voe0n2 20202 aE 0202 Oz 02202 

Ferner erhalten wir fiir den Geschwindigkeitsvektor 

: OF : Oa 
Va + ivy = — 24 =5 Uk ivy = 215 

(4) (oe OP, (oF, OF 
ve =i (5, 3)3 ey ee Oz). 

Bei langsamer stationarer Bewegung haben wir die einfache Diffe- 

rentialgleichung 
Rus 

(5) gato 7? 
die mit dem System (1) gleichbedeutend ist. Die allgemeine Lésung dieser 

Gleichung hat die Form 

(6) ‘P = ti [z Fe (2) — zFi(2)] + Fs(z) + Fal2), 

wo die F beliebige analytische Funktionen bezeichnen. 

Fiir diesen. Fall ergeben sich ferner aus (1) mit Hilfe der Transfor- 

mationsformeln fiir die Rotation, den mittleren Druck, den Druckgra- 

dienten und die Komponenten des Spannungstensors die einfachen Aus- 

driicke 

(7) w = 31[F,(z) — Fi), 

Op O2v, Op O2v 
= as — ¥y 

| A ri 6m Ripe cr 
Op _,/op .0p\ , @ ; Be 

: eas 
i 54) = 2H az gg@= — Irv) = Ain sass 

Op  ,(Op  .Op : oO : SO 

5F Ege + 85g) = 2k gaggle + ie) = — die 
oder 

0 1 ” Op "7 
de BFL); an F,(z), 

(9) p= ZF, + F,(2)] 
) 2 2 

Ox + Oy = — 2p Og — Oy 4 ll cae st) = 4 ul mee Ree 
" \Ox Oy \ oz OF)? 

(10) » er ey 

2. Niherungslésung fiir die Strémung um einen unendlich 
langen Kreiszylinder. Die Stroémung um einen Kreiszylinder ist nicht 
direkt aus den gegebenen Formeln zu erhalten. Wohl aber liBt sich das 
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Stromfeld zwischen zwei konzentrischen Kreiszylindern konstruieren, von 
denen sich der auBere mit der Geschwindigkeit w) parallel zur z-Achse 
bewegt, wahrend der innere in Ruhe ist. Die Stroémung einer unendlich 
ausgedehnten Flissigkeit um einen mit konstanter Geschwindigkeit be- 
wegten Zylinder ist dann daraus mit beliebiger Anniherung zu gewinnen. 

Wenn wir den Radius des inneren Zylinders gleich der Einheit annehmen 

und bedenken, daf z - z= a2-+ y2, so sind die Funktionen F in Gleichung (6) 

so zu wahlen, daB die Grenzbedingungen erfiillt sind: 

Vz = Vy = 0 fiir z 

ip= th, i= UV » # 

Da die Stroémung symmetrisch zur x-Achse verlauft, so muB WY mit y 

das Vorzeichen andern, d.h. es gilt 

(11) 21 P=2F@)—2F@®)+f@—f@), 

ve bivny=— 202 =—2F @+FO+/@. 
(12) ee ee 

ee = BFC) +FO+/C). 

Die Grenzbedingungen werden erfiillt, wenn die Funktionalgleichungen 

Le, yi ' | o=--F+F()+/0 
R\ , 
aed 

fiir alle Werte des Parameters ¢ giiltig sind. Eliminiert man f’(¢), so 

Bi n(2) 7) 

ne BASS Os P( 

erhalt man 

(14) Uo = — (Kh? — 1) 

Setzt man 

F@®)=at? + Plgt, 

so ergeben sich aus (14) durch Koeffizientenvergleich zwei Gleichungen 

zur Bestimmung von a und #, aus denen sich 

B Uo 

~ R241 2(R?+1)lgR—2(R? +1) t 

berechnet. Ferner ergibt sich aus (15) 

fQ=204+% + a(R?+ Vlg, 

f() = 2at— + a(R? + Itt — V. 

Daher entsteht fiir die Stromfunktion der Ausdruck 

# —(R?—)), 
Zz 

(15) 27 = a(z—2)|(R2 + Ylgzz—22 + 
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der bei Einfiihrung von Polarkoordinaten tibergeht in 

2(Re4I)rigr—r9 +2 =r (R?-1) 
(15a) PY = uo sin p — 2[(R + l)lgR-(R®-1)] 

Wenn der innere Kreis den Radius @ hat, so wird 

2 72 R2 

2(R? +a*)rlg ~ = Te =< =r (hh — a?) 

(15b) P= uo sin yp Pa 
2|(R? + a*) lg — (Re — at) 

Man sieht in der Tat, daB fiir r=a die Geschwindigkeiten v, =v, = 0 

werden, wahrend sich W fiir r=R aut =u, sing reduziert, also 

V, = Uo, V, = 0 wird. Nehmen wir z. B. nae 10, a=1, so ist die Schar der 
a 

Stromlinien in der Gleichung enthalten 

C 
tote me 100 ; 

2021¢ t ey —r?—99 

nach der die Abb. 42 hergestellt ist. Wenn F sehr gro ist, so kann man Y 

angenahert in der Form ansetzen 
is 

lg me 

R 

ee 
‘P= usin gp-r =Cuosing-r-lgr, 

in der sich schlieBlich der Zylinderradius ganz heraushebt. Diese Grenz- 

form ist also als Lésung fiir den Fall der unbegrenzten Fliissigkeit nicht 

geeignet. 

Schreibt man den Ausdruck fiir ¥Y in der Form 

P= using: x(r), 

so ist die Wirbelstarke 

(16) ol = 3sin p| 2” +37 — 4). 
Kinsetzung ergibt die Proportionalitit 

| Ra? 
w| co ae ol = 2Y 

Der Ausdruck rechts ist aber der Imaginiirteil des komplexen Potentials 

jwjoo 32+ =
 

Die Linien gleicher Rotation fallen also zusammen mit den Stromlinien 
einer Potentialstrémung, die sich zusammensetzt aus einer Parallelstré- 
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mung und einer Doppelquelle im Ursprung, und die den Kreis mit dem 
Radi /R? + a? a te Oe adius @=| 4 — als singulaire Stromlinie enthiilt. 

Wenn man die Randbedingungen fiir beide Kreise vertauscht (v=Uo 
am inneren Kreis r—a, v=0 am duBeren Kreis r=), so erhalt man die 

Abb. 42. Langsame zihe Str6mung um einen Kreiszylinder. 

(Naiherungslésung nach Frazer.) 

absolute Strémung in der Umgebung eines mit der kleinen Geschwindig- 

keit wu) bewegten Kreiszylinders fiir den Fall, dai die Flissigkeit nach 

auBen von einem gréBeren konzentrischen Zylinder begrenzt wird. Die 

Stromfunktion nimmt dann die Form an 

(r? +a?) iE = 1] — 2 (R? — a?) lg— 

(17) ‘P= ru sin” R =" 
2 (R? +a?) ig = -1| 
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Zur Konstruktion der Stromlinien kann man die durch 

aha R 
(U7a) roa = llr? + a°)(7 —1)— 20? + ag | 

gegebene reduzierte Stromfunktion benutzen. Setzt man etwa der Abb. 43 

entsprechend - =6, a=1, so erhalt man 

: : 36 
Prea = y G aia (5 

‘Coen. 
re ay 1} = 41g: 

Die Stromlinien sind, ihre Fortsetzung ins Innere des Kreises mit- 

gerechnet, geschlossene Kurven, die in den Schnittpunkten mit dem 

Abb. 43. Absolutstr6mung um einen Kreiszylinder, der sich langsam in einer, 

von einem konzentrischen Zylinder begrenzten ziihen Fliissigkeit bewegt. 

Kreis horizontale Tangenten haben und zwei ausgezeichnete Nullpunkte 
(Wirbelzentren) der Strémung umkreisen, deren Abstinde y=-+r der 
Gleichung A: 

= =0 
cr 

gentigen. Die Nullkurve ¥/=0 zerfillt in die Achse y=0, den Kreis r= R 
und einen konzentrischen, innerhalb des Kreises ra gelegenen Kreis, 
der fiir das gezeichnete Beispiel den Radius r & 0,5a@ hat. 

Da wir bei der spater zu besprechenden Bewegung einer Kugel ganz 
ahnliche Verhaltnisse antreffen werden, die sich aber leichter durch den 
Versuch nachpriifen lassen, so wollen wir die weitere Diskussion auf diese 
Gelegenheit verschieben. 
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§ 35. Die Lamb-Oseensche Lisung fiir einen Kreiszylinder. 

1. Der allgemeine Ansatz. Die im vorigen Abschnitt besprochene 
Lésung fiir die langsame Bewegung eines Zylinders in der Fliissigkeit 
kann nach Oseen in folgender Weise vervollstandigt werden. Man geht 
von der relativen, auf den als fest betrachteten Kérper bezogenen Stré- 

mung liber zur absoluten oder Stérungsstrémung, d.h. zu dem augen- 

blicklichen, auf den festen Raum bezogenen Geschwindigkeitsfeld in der 

Umgebung eines geradlinig bewegten Kérpers, und vernachlassigt in der 

entsprechend transformierten Gleichung die eigentlich quadratischen 

Glieder (das Produkt aus Rotation und Geschwindigkeit oder die rota- 

torischen Tragheitskrafte gegeniiber den Zahigkeitskraften), wahrend man 

die ,,halbquadratischen‘‘ Glieder, die die Translationsgeschwindigkeit als 

Faktor enthalten, beibehalt. Ersetzt man also in 

(1) oFo=— Pptydp 

y, durch v,—vo und benutzt die von friiher bekannte Umformung, so 

entsteht 
1 (2) — we gp — 9 Xrotv=—F (2 + 50°) 4940 

und daraus durch Vernachlassigung von » x rot p die Oseensche Gleichung 

(3) to 5p P(E +508) +040 =0. 
Wenn man auch noch das Geschwindigkeitsquadrat unterdriickt, so 

entsteht die ,,erweiterte Stokessche Gleichung“‘ 

(4) ee —+tvdv=0, 

die insbesondere fir kleine er ce Zahlen in Betracht kommt 

und die wir unseren weiteren Rechnungen zunichst zugrunde legen 

wollent). Schreibt man die Gleichung (4) in der Form 

Wie © \ eee 

eo) (4+ y da)? ork! 

und bildet die Divergenz der beiden Seiten, so kommt wegen div v=0 

Ap= 0. 

Wenn demnach @ eine Potentialfunktion ist, also der Gleichung 1 6=0 

gentigt, so lautet ein partikulires Integral der Gleichung (4a) 

OP ~ 
(5) P= OUo5 3 v=V@. 

1) C. W. Oseen, Arkiv for mat., astr. och fysik, Bd. 6, H. 29, 1910; Vortrage 

aus dem Gebiet der Hydrod. u. Aerod., Innsbruck 1922 (hersg. v. Karman und 

L. Civita), S. 123—135, Berlin 1924; Hydrodynamik, Leipzig 1927, 8. 30ff. 
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Die Gesamtlisung von (4) setzt sich dann aus einer Potentialstromung 

und einer wirbelbehafteten Strémung zusammen, also 

p= a) = Wis 

und man erhalt durch Einsetzen in (4a) fiir p, die Gleichungen 

0 
(6) (4 + 2k5,)m1 =0, Fn =0, 

U -; a 
wenn man — —2k einfiihrt. = 

Fiir die w- und y-Richtung ergeben sich daher mit Benutzung der 

Relation 
Av, = — rot rotv; = — 2rotw 

die Beziehungen 
CPO. , Crs: OY » Ow 

Aye 5S 4+ = 2 t= — 22, 210i oa aay eae oy 
Ap __ Ory O Uy = 9 Oy — 5) Ow 

A Oat Oy Ox SOx 

Fihrt man weiter 
0% 

Di ee 
oy 

ein, so kann man nach der letzten Gleichung setzen 

x 1 oz 
(7) MGS 8 Oy? 

und man findet dann durch Integration von 

ow = Ox _ Oy 0%, 1 eee oe 

oy Ox Oy 2k Oy \O2 Oy 
fiir v,, den Ausdruck 

1 oy 
8 Via — *. (8) 2 XT OE Og 

7 
Nach Einsetzen von (7) und (8) in die beiden Gleichungen (6) und 

Addition gewinnen wir fiir y die Differentialgleichung 

(9) (4+ 2h \y=0. 
Die Lésung von (5) liBt sich mittels ebener Kugelfunktionen durch 
den Ansatz B 

C 

D) =e Aolgr Aa ler Se ene 

darstellen, wobei wir uns auf die beiden ersten Glieder beschranken 
wollen. 

Um die Funktion ¥ zu bestimmen, zerlegen wir sie in zwei Faktoren, 
von denen der eine nur von x, der andere nur von r abhangig ist, 
setzen also 3 

¥ = X(x)- Rir). 



§ 35. Die Lamb-Oseensche Lisung fiir einen Kreiszylinder. 129 

Mit Benutzung von Polarkoordinaten wird 

il @ He ib @Py 

r or | 7 ag? 
woraus sich mit y=e~**—e—"roosp tir R die ree der Bessel- 
schen Funktion nullter Ordnung 

@R 1 aR 
(10) FPO ap 0 

ergibt. Als einzige Lésung dieser Gleichung, die, wie verlangt, im Unend- 
lichen verschwindet, kommt die sogenannte Hankelsche Zylinder- 
funktion mit rein imaginirem Argument in Betracht!). Wenn wir die 

gewohnliche Besselsche Funktion nter Ordnung mit J, bezeichnen, so 

haben wir (nach englischer Schreibweise) folgende abgeleitete Funktionen: 

| In{kr) =¢1-"JIn(tkr), 

(a) (44+2be\n =F 44 OR “+ 2b cosp =0, 

ee) 

7 [Lénller) = In(kr)] = fe-*°. Cosnadu. 
0 

Statt Ao (kr) findet sich in der deutschen Literatur die Funktion H (ikr), 

die zu Ky in der einfachen Beziehung steht 

5 HY (ikr) = Ko(kr). 

Fir [,)(kr) und Ko(kr) gelten die Entwicklungen 

2sinnza 
(11) Knlkr) = 

1 kr)4 

es Tok) = 1+ glk? + gato 
kj 2 kh 6 

| Ko(er) = —Lolknlgtykr+ = = eee ae Spiers Ae ae 

wo y die Mascheronische Konstante (y= 1,781 . ,lgy=0,57722) bedeutet. 

Bei kleinem kr haben wir die Naherungsdarstellung 

Kolkr)~ —lgskry. 
ker >0 

Mit Einfiihrung der (Hankelschen) Funktion Ky erhalten wir demnach 

als partikulare Losung von (9) die Funktion 

(13) ie Cae Cee PAK o (len), 

und damit ergeben sich nach (7) und (8) als strenge Lésungen der er- 

weiterten Stokesschen Gleichungen die Geschwindigkeitsausdriicke 

0 C “9 7 COS (P é ve = 5, |4olgr+ Ais lger + 9; es conn K (kn) OTE IST AV 
14 

| 1k eRe Ajlgr+A a rt cen bres. K (er) Y= oy 018 Line ok © Oe 

1) Gray and Mathews, A Treatise on the Bessel Functions, London 1922, 

S. 20f.; ferner Riemann-Weber-v. Mises, Differentialgleichungen der math. 

Physik, Braunschweig 1927, I. Bd., S. 820 ff. 
Miiller, Theorie der ziihen Fliissigkeiten. 9 
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die im Unendlichen das geforderte Verhalten zeigen, mithin nur noch 

den Bedingungen am Kreisumfang r=a@ anzupassen sind. 

Im Anschlu8 an Oseen kann man die Integrale auch folgender- 

maBen auffassen. Fiihrt man als lineare Kombination von ® und ¥ 

die Funktion 
Q=aO+ px 

ein, so gilt fir 2 die Gleichung 

0 7) O (4 + 2kz)2 = 2hag,|do ler + As ler +--+] 

Wir erhalten also auf der rechten Seite wieder eine Potentialfunktion @, 

so daB Q der Gleichung 
a. 

AZ Oe (15) A(4 + 2kz-|Q=0 

gentigt, die Oseen seinen Betrachtungen zugrunde legt. Nimmt man 

als erstes Integral 
3) 0 foo fe) Oren oles (16) (44 2ho-)0 = 25 ler 

an, so setzt sich die Gesamtlésung linear zusammen aus der ,,er- 

zwungenen* Verteilung der Partikularlosung von (16) und der Lésung der 

homogenen Gleichung (9). Da (16) die partikulire Lésung Q, = e lg r 

hat, so laBt sich die gesamte Lésung in der Form schreiben 

= 24+ 2,=algr+cy. 

2. Naherungslésung fiir den Kreiszylinder1). Wenn man die 

aus der Theorie der Besselschen Funktionen bekannte Beziehung 

benutzt, so lassen sich die Ausdriicke fiir die Geschwindigkeitskompo- 
nenten in der Form darstellen 

P o v= Avge lgr + Aig aler —3Ce—*®- Ko(kr) 30 ~ e—** Ky (ler) 
(17) 

vl (6) oO y - 
Vy = Aye, lor + Aran dy 8" = OL ©. Ki (kr) 6 

Fiir die Funktion K,(kr) gilt die Entwicklung 

; 1 
Ki(kr) = it skrilgsyvkr —4 +lgGykr—1— Ae 

1kr)4 + (igiyér —1—3— HERE +... 
1) Vgl. H. Lamb, Phil. Mag. 21 (1911), S. 112—121; ©. W. Oseen, Hydro- 

dynamik, 8. 177f. 
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au 2au Ae oe 2 2 
Wenn ka Sons =F- — = klein ist, so kénnen wir in der Nahe des 

Kreiszylinders angenihert setzen 

Ko(kr)~ —lgtykr, Kilkr)o 

alsdann erhalten wir 

g 32 —p a 
ve = Ag? — Ay — ES 2Ole ky en — agp CO8P(L — kr cos g), 

(17a) 
sin g sin2gp Csing(1—krcosg) 

laze —— A, sees E kr £ = 

Am Kreise r=a wird daher v,=0 fiir 

C Ca? 

eye | etary 
und 0, = Uo fiir 

2Uy 

a= Ighyka 
Damit gehen die Geschwindigkeitswerte in der Nahe des Zylinders iiber in 

Vx =F[l-2igdyir + 7S cos 2) 

ale C (r?—a@’) . 
Us as sin2¢p. 

Fiir den Druck erhalten wir nach (6) 

p= 7C oto 
1 os 1 

ka 8" 2 62/8" 
F oP 4 ge P|. 

y2 = Cou 
(18) | 

Zur Bestimmung des Widerstandes haben wir die axiale Komponente 

des zum Winkel  gehérigen Spannungsvektors 

: OV, Ov, OU Nes 
Tox = Ox COS P + Tay Sin py = (- p+2u 7a) cos p + LL i ic ae sin ~ 

iiber den Kreisumfang zu integrieren, mithin 

27 

W= a| tyxdp 

0 

zu setzen. Das den Druck enthaltende Integral gibt 

= afpeos yay =— Cu feos gdp =—Cun; 

ferner wird 

22 27 

2ua/ 4 cos pay = — 2,0 |sin®y cos pdyp = — Cu 

0 hae 0 
Q* 
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sowle 

27 27 

wf G2 +22) in yap =n fon oy —sine dy = — 30H 
0 0 

so daB wir mit Benutzung des oben gefundenen Wertes der Konstanten C 

als erste Naherung fiir den Widerstand bei kleinen Reynoldsschen 

Zahlen den Ausdruck 
47 UU 

4—Igtyka (19) W =—227uC=— 

2aUy 
Vv 

erhalten. Fiihrt man die Reynoldssche Zahl in der Form R= 

ein, so ergibt sich 
a 

82 OR Oe: 

(19a) We sii: 
8 

mithin als Widerstandsbeiwert 

W Sa 

(19b) CUS era ee nO 002 = et) y 
2a- 9 

In der Abb. 44 sind die teilweise durch Extrapolation ergainzten 

Versuchswerte (von Wieselsberger u.a.) fiir kleine Reynoldssche 

Zahlen neben den theoretischen Werten in logarithmischem Mafstab 

aufgetragen, und zwar sowohl die aus der Lambschen ersten Naiherung 

10 | —- ig 

8 

it Borrstow 1923 

y ie = ; if 

3 a SS 
~~ 

4b = He lees ~. 

I 

1 ak ae 

aH G, as Aa 4a Karman+Aubach 
O5 +r wt ae ate ut 

mi 
sie 4 

_—_ 

galt ae CSS BS CS) | a) TLL ee a ee ec 01 «2 3 4 Q567897 2 3 45678 47 29 3 USTED TG wh Oty 

Abb. 44. Widerstandsbeiwerte fiir einen gleichmaBig bewegten Kreiszylinder bei 
kleinen und mittleren Reynoldsschen Zahlen. (Nach F. Eisner.) 
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als auch die aus der im folgenden Paragraphen zu besprechenden Bair- 
stowschen zweiten Naherung gewonnenen Beiwerte. Obwohl die Normal- 
druckverteilung (das Verhaltnis c » des Druckes p zum Staudruck 402) 
offenbar unrichtig ist, so schlieBen sich doch die Beiwerte etwa bis zum 
Werte R=1 ganz gut der Wirklichkeit an?). 

§ 36. Berechnung der Stromfunktion und Ergiinzung 

der Liésung. 

Zum Zwecke der Diskussion der gefundenen Naherungslésung be- 

stimmen wir die Stromfunktion, die entsprechend den Geschwindigkeits- 

ausdrticken aus zwei Bestandteilen Y, und YW sich zusammensetzt. Die 

dem Potential ® zugeordnete Stromfunktion Y; geniigt den Gleichungen 

a) a0 _ af 00 om, 
Or _rdg’ rog ae © 

sie ist der imaginaére Bestandteil des komplexen Potentials 

A 
Alp lgz + = A 

so dab, abgesehen von einer additiven Konstanten, 

(2) P, = Ang — Ai at 

wird. Der zweite Teil WY, geniigt den Gleichungen 

Ov, (geal eet OF, OSE Meira ee (3) ae-(1 + 3p 95) Koll); Gt=— spre **- Koll), 

deren Integration in einer bemerkenswerten Arbeit von L. Bairstow?) 

durchgefiihrt worden ist. Im Hinblick auf die Umstiandlichkeit der 

Rechnung, in der ausgiebig Gebrauch von der Theorie der Besselschen 

Funktionen gemacht wird, begniigen wir uns damit, das Endresultat in 

seiner allgemeinen Gestalt anzugeben. Man erhalt 

(4) 2k ep, = — p + kr (sing [Ko (Io + Ie) + 2. Kili) 
— Fsin2p[Ko(li aie Ts) SIF 2 Ki 12] aie 4 \ > 

wobei K, und J, die oben eingefiihrten Besselschen Funktionen von kr 

bedeuten. Wenn man nun kr nur in der ersten Potenz beriicksichtigt, 

also annaherungsweise 

K.=—Ighykr, Ki=7-, b=1, Lh =}hr 

1) Vgl. F. Eisner, Widerstandsmessungen an umstrémten Zylindern, Berlin 

1929, S. 17. 

2) L. Bairstow, B. M. Cave and E. D. Lang, The Resistance of a Cylinder 

Moving in a Viscous Fluid. Philosoph. Transactions of the Royal Soc. of London, 

Vol. 223, 1923, 8. 420. 
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setzt, so kommt 

(5) ofp, =—p + krsin p[l —ighykr), 

ein Ausdruck, der auch direkt aus dem Naherungswert von 7 gewonnen 

werden kann. Im ganzen haben wir daher, wenn wir in (1) die Koeffi- 

zienten durch C rl 

Ry en SLA (6) eee 5 sing |r(l — Igsyvkr)—3 > 

Dieser Ausdruck zeigt Symmetrie in bezug auf eine durch den Kreis- 

mittelpunkt gezogene Senkrechte zur Bewegungsrichtung. Daf in gréBe- 

rem Abstand vom Kreiszylinder die Symmetrie nicht mehr besteht, er- 

gibt sich bereits, wenn wir die Glieder bis zur zweiten Potenz von kr 

beriicksichtigen. Dann ist zu setzen 

‘ 1 kr Ko=—Igtykr, Ki= zz, b=l, L=Z, Le =4ery, 
und man hat 

Ko(li + Is) + 2 Kile = $krih — —Igiykr], 

womit die Stromfunktion tibergeht in 

2 a 

r 
(7) P= r(l —lghykr) —2 

Osi 
= skr? cos p(s —lgtykr)|. 

Man sieht hier, daB die Str6mung auf der Vorder- und der Hinterseite in 

groéBerem Abstand vom Kreiszylinder verschiedenes Verhalten zeigt. Sie 

setzt sich im ganzen zusammen aus der wirbellosen Strémung mit dem 

Potential P l 
@—@G@+ pyar’ 

und einer Strémung mit kontinuierlicher Wirbelverteilung. Der erste 

Teil von ®’ besteht wieder aus einer im Mittelpunkt gelegenen Quelle 

von der Ergiebigkeit C 
q=2i aE 

sowie aus einer nach der negativen x-Richtung orientierten Doppelquelle 
von dem Moment Ca 

= 95 it Sober 

Die Quelle wird durch eine gleichgroBe Senke des zweiten Teiles oes x 

aufgehoben, wie man ohne weiteres sieht, wenn man die radiale Ge- 
schwindigkeit berechnet; es wird niimlich 

eo) 2 ee cosg ee, 

2kr a re 

C 
Sr cos (1 — lot ykr). 
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In der Nahe des Kreiszylinders haben wir fiir die Gesamtstrémung 
Ca? cos pp C 

(8) eames i C08) (E— lovin). 

“te a 

es 

ee 
Abb, 45. Absolutstrémung um einen gleichmiBig bewegten 

Kreiszylinder (R = 0,5). 

Hinter dem Kreiszylinder, insbesondere im Kielwassergebiet, wo cos 

negativ ist und mit wachsendem r der I sich nahert, iiberwiegt das nega- 

tive Vorzeichen (bei vorausgesetzter Kleinheit der Reynoldsschen Zahl), 

was auf die Ungleichung angle 
tykr<e 2%” 

hinauskommt. Setzen wir z. B. R=0,4, ka=0,1, —=A, so ergibt sich 

der ungefahre Grenzwert von A, wenn man = vernachlassigt, aus 
: 

0,089 
Die Stromlinien verlaufen also jedenfalls im Kielwassergebiet auf den 

Kreiszylinder zu. Wenn dagegen cos  positiv ist, so wird v, positiv. Auf 

der Vorderseite laufen die Stromlinien, wie zu erwarten war, vom Kreis- 

zylinder weg. In gréBerer Entfernung vom Zylinder nimmt die Strémung 

einen einfachen Charakter an, der sich leicht aus dem Verhalten der 

Besselschen Funktionen fiir groBe Argumente herleiten la8t. Wir haben 

unabhangig von der Ordnungszahl 

00894 —e7 = = 30,5. 

—kr 1 kr 
Knlkr x|/sine 5 In(kr) ~ ———e 
ey ) 2kr ae) \2akr 

4 SSID) 

ee Qkr © 4 
kr > oo 
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[a —kr(1+ cos) , ( 
daher aaa ab ax => | Dir e J] — cos (p). 

a == ns jf ee als Pe BS EN) 

Qkhoy >| 2kr y : 

Fiir groBe Werte von r hat daher die radiale Stromungsgeschwindig- 

keit das Verhalten der Funktion 

(l— cos g)e- Naa ks Ur WO 
G Cy/ a 

Qkr 2 ) Qhr 

Der Unterschied der vorderen und der hinteren Seite fallt hier deutlich 

in die Augen. Auferhalb der Kielwasserzone, also insbesondere auf der 

Vorderseite, kommt allein das erste Glied in Betracht, da ge bri + cos) 

stirker gegen Null konvergiert wie is und man sieht, dai die Stromlinien \r 

im Unendlichen in radiale Strahlen aus dem Mittelpunkt des Kreiszylin- 

ders iibergehen, als ob sie von einer dort konzentrierten Quelle herriihren 

wiirden. In der Kielwasserzone dagegen, die etwa durch eine Parabel 

r(1+cos~)=A=const, deren Brennpunkt im Kreismittelpunkt hegt, be- 

grenzt zu denken ist, ist das erste Glied gegen das zweite zu vernach- 

lassigen, wodurch die Stromschleppe hinter dem Zylinder auch im Un- 

endlichen bestatigt wird. Da hier die Bewegungsrichtung, wie die Aus- 

driicke fiir v, und v, zeigen, durch die Gleichung 

Vy sin g 

cid z as eee ot oor 

ausgedriickt ist, so sieht man, da} die Stromlinien nicht gegen radiale 

Strahlen konvergieren, sondern den Winkel zwischen Bewegungsrichtung 

und Radiusvektor halbieren (vgl. Abb. 45). 

Das Kielwassergebiet ist ferner durch stiarkere Wirbelbewegung cha- 

rakterisiert. Die Wirbelung ergibt sich nach den Formeln ohne weiteres 

durch die Ableitung von y nach y. Wir haben daher 

2w = Cksin pe"? 8? . Ky (kr). 

Die Kurven gleicher Wirbelstiirke sind nicht symmetrisch; sie ragen 
stirker in das Gebiet hinter dem Zylinder hinein (vgl. die auf den 
analogen Fall der Kugel beziigliche Abb. 51). Die Wirbelstirken w, und 
w, tir zwei gleichweit vom Nullpunkt und der xw-Achse abstehende 
Punkte vor und hinter dem Zylinder verhalten sich wie 

Wh 
Wy 

Die Stellen starkster Rotation liegen auf dem Kreis in den der Gleichung 

—= puke : 

1—)1 + (ka)? 
Ie 2kha ka 



§ 37. Die Translation eines Rotationskérpers. 137 

entsprechenden Punkten, die demnach von den Punkten g=+ = der 

Querachse einen Bogenabstand haben, der der Reynoldsschen Zahl 
proportional ist. 

§ 37. Die Translation eines Rotationskérpers, insbesondere 
einer Kugel in einer ziihen Fliissigkeit. 

1. Die Integration der in § 35, (4) angegebenen Differentialgleichung 

fiir die Strémung um einen mit konstanter Geschwindigkeit bewegten 

festen Korper lait sich, wie Oseen, Lamb u.a. gezeigt haben, auch 

im achsensymmetrischen Falle in ahnlicher Weise durchfiihren wie im 

ebenen Falle. Insbesondere ist es méglich, die Lésung naiherungsweise 

fir kleine Reynoldssche Zahlen einer Kugel als Grenze anzupassen!). 

In der Ableitung werden wir der iibersichtlichen Darstellung von 

Burgess?) folgen, die sich im besonderen auf die Bestimmung der 

Stromfunktion WY bezieht und die von Zylinder- und spharischen Ko- 

ordinaten Gebrauch macht. Dabei wird dann gleichzeitig die klassische 

Stokessche Lésung als bemerkenswerter Grenzfall auftreten. 

Wenn wir achsensymmetrische Zylinderkoordinaten einfiihren, und die 

axiale Koordinate x sowie die dazu senkrechte Radialkoordinate (etwa in 

der Ebene y=0) y nennen, so lautet, wie wir oben gefunden haben, die 

allgemeine Differentialgleichung fiir die Stromfunktion 

0 0 O 2vy Via 

wobei mit D die Operation 

oe Oe et: 
P= oy — yy | Oe 

bezeichnet ist. Wenn wir nun das absolute, den Rotationskérper be- 

gleitende Strom- oder Stérungsfeld zugrunde legen und annehmen, dal 

der Koérper eine gleichmaBige Bewegung in der positiven «-Richtung 

ausfiihrt, so haben wir v, durch v,,— uw» zu ersetzen. Unter Voraussetzung 

der stationiren Beschaffenheit der Stromung erhalten wir dann die Grund- 

gleichung 
0 O my leet 

(2) Capel ee ID) ID == O. 

1) Vgl. neben den oben angefiihrten Arbeiten C. W. Oseen, Arkiv usw. Bd. 9, 

Nr. 16, 1913; Hydrodynamik, 8. 166 ff.; F. Noether, Zeitschr. f. Math. u. Physik, 

Bd. 62 (1911). 

2) R. W. Burgess, The Uniform Motion of a Sphere through a viscous 

Liquid. Americ. Journ. of Mathem., Vol. 38 (1916), S. 81—96. 
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Es wird sich in der Folge darum handeln, Naherungslésungen dieser 

Gleichung fiir den Fall der bewegten Kugel anzugeben, wobei wir wieder 

als Grenzbedingung das Haften der Fliissigkeit an der Oberflache an- 

nehmen. 

2. Die erste Oseensche Loésung. Laie sce wir zunichst die 

quadratischen Glieder in (2), so erhalten wir CLT A =k die vereinfachte 

Gleichung J 
e) : (3) (5, +2kD)D¥=0, 

deren Lésung sich wieder wie in den friiheren Fallen zusammensetzt 

aus einem partikularen Integral WY” und der Lésung der homogenen 

Gleichung 

(4) =). 

Die Lésungen ¥” gehéren zu einer Teilstr6mung, die ein Geschwindigkeits- 

potential @’ besitzt. Die beiden einander zugeordneten Funktionen @’ 

und Y’ kénnen durch Kugelfunktionen dargestellt werden). Fiihren 

wir daher spharische Koordinaten xz=rcos 3, y=rsin # ein und die 

Legendreschen Kugelfunktionen n-ter Ordnung 

n(n—1) cos" Ft — ~_—_* cos? —2.7 + --], 
m+1 o” pease 

2(2n—1) nm! Oan\r} — ni 
Pr=(— ive 

die bekanntlich der Gleichung 

OP, 
0=n(n+1)Prsind +5 — G (sine ae "| 

geniigen, so haben wir als elementare Potentiale 

Pi =a ee 
n mon +1 

Daraus leiten sich dann mit Hilfe der Formeln 

6o 1 OF OF ang of Ce seers PO ta 2 A 
Or rsind O09 Or a Oe 

die entsprechenden elementaren Stromfunktionen her 

sin + OP, UY 
a m O° 

Von Konstanten abgesehen, haben wir daher fiir die ersten Funktionen 

by 

TS 4 sin® ‘b 2 4 te == cos, ee v | rea sin? FCOS ST 

re 

*) Vgl. die bekannten Biicher tiber Kugelfunktionen oder H. Schmidt, Ein- 
fiihrung in die Theorie der Wellengleichung, Leipzig 1931, § 27, S. 113£. 
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Diese Funktionen sind die Lésungen der auf Kugelkoordinaten trans- 
formierten Gleichung (4), also von 

(od ae sind O ( 1 3)= 
Ue =v 

(4a) Da Or r2 O¢\sind OF 

Um den zweiten Bestandteil Y’’ zu bestimmen, setzen wir 

iy eka. XY 4, 
Vv 

und erhalten dann fiir y die Differentialgleichung 

o? i @ oO? (5) ( ofa g cynem a =" 
die bei Einfiihrung von Kugelfunktionen tibergeht in 

(5a) Oy sind a Oy 

oe tT 2 d9\sing al oie eat 
Wir setzen jetzt ebenso wie im ebenen Fall die Funktion y als Pro- 

dukt zweier Funktionen R(r) und O (#) an und gewinnen damit die 

Teilgleichungen 
aR n( 

| pee 
ar ere 8 ges 

| n(n + 1)0 + sind.” (a5 55) = 0- 

a0, 

(6) 

Die Lésung der ersten Gleichung ist fiir ganzzahliges n in endlicher 

Form darstellbar!). Die zweite Gleichung fiihrt auf Kugelfunktionen. 

Wir haben 
\ +1 

| Ba rntt(— x) (Aekr + Ber), 

) | Gy =sing 22 
nm — SINa De 

und erhalten daher, wenn A=O gesetzt, also vorausgesetzt wird, dah 

die Funktion im Unendlichen endlich bleibt, 

yp” = e—kra + cos?) U a bo cos ap, sin2 # (ze aL | 

3k 2) | 
+ be sin? eos 9 {k? aR ae a laa ; 5 

mithin als allgemeine Lésung der Gleichung (3) 

sin? i 29 j 29. oy © 

(8) #=cocosd+c1 a cee = — + ¢s- ya (0.cOs? —Il)+... 
_ 

4 g—kr(i + cos) D EST cond ab, sin? 0(k ue -} 
3k 3 + bosin? JeosH(k? +7" + 2)+. 

1) Vgl. etwa A. R. Forsyth, Lehrbuch der Differentialgleichungen, Braun- 

schweig 1889, S. 203. 
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Diese Lésung ist nun den Grenzbedingungen anzupassen. Die radiale 

und die dazu senkrechte Geschwindigkeit, also 

Oe ih Glau 

(9) =n 09? =~ Feind Or’ 
mitissen tiberall endlich bleiben und im Unendlichen verschwinden. Diese 

Forderungen sind erfillt, sobald wir b=6, setzen, da in diesem Falle 

Og 

Ov 
der Kugel 

und — durch sin ? teilbar sind. Ferner muB an der Oberflache 

Ur = Uo Cost, v9 = — Uosind 

werden. Beschrankt man sich nun, um die erste Oseensche Naherung 

zu erhalten, auf die Glieder mit den Koeffizienten bo, Co, C1, so lauten 

die Oberflachenbedingungen 

—ka(1+cos) C 2c, cos e 
(10) Up COS2? = — er = Aes + bo =a gar (1+ ka(l — cos], 

—=WWosinw = aL bok sin G-e— kal + cos) | 
a 

Der Vergleich der Koeffizienten von 1 und cos ? in der ersten und 

von sin ? in der zweiten Gleichung gibt 

Seep ee 2bok _& bok 
Co = 00; Ue a eae ese Un == Tad 

woraus 
2 
sar U, as 

Co = bo = — ne De iy 

Wir erhalten daher als Naherungsausdruck fiir ¥Y bei kleinen Rey - 
noldsschen Zahlen 

Sain2 dies Uy @* sin o 

47 

Bae 2 =H rans 
—=sVa(l— cos sje” Gr + con) — Fa cose 

oder nach Hinzufiigung der Konstanten — 2 va 
= 

(11) P = 2ya(l — cos 9) [1 — e~ kr + e089) — Ss a, - 
Wenn wir den Exponentialausdruck entwickeln, so ergibt sich 

‘ ONG YaWe Nn ee BACHE 
Py = ial — ) sine y— oy sin?.9(1 + cos 9) + «+. a i i 

Vernachlassigen wir den zweiten Ausdruck, setzen also 8 =0, so ergibt 
sich die Lésung von Stokes!) fiir die langsame Bewegung der 
Kugel, naimlich 

Uy a" 
(12) p — - ( 

3r a 

a r 
n )sin’ f= atoarsin? 3(1 - 

wol- 
—_— |e eee: 

iw) 

rrr, 

1) G. G. Stokes, Trans. Cambr. Phil. Soe., Bd. 8, 1845. 
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Zum Vergleich mit der Oseenschen Lésung haben wir das absolute 

und das relative, durch die Funktion 

(12a) #, = — he +(4) —3(4) 

charakterisierte Stromfeld der Stokesschen Lésung in den Abb. 46 u. 47 

dargestellt. Wahrend hier die Stromlinien in bezug auf die Ebene x=0 

symmetrisch verlaufen, haben wir im Oseenschen Falle, der in den 

Abb. 46. Absolutstrémung um eine gleichmafig bewegte Kugel 

nach Stokes (R = 0). 

Abb. 47. Relativstrémung um eine gleichmiBig bewegte Kugel 

nach Stokes (R = 0). 
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Abb. 48, 49 fiir 8% = 0,4 gezeichnet ist, ihnlich wie beim Kreiszylinder eine 

ausgesprochene Asymmetrie der Strémung, die namentlich in der Abb. 49 

hervortritt, fiir die der Radius 1, des Wertes in der ersten Figur gewahlt 

ist, und die daher die Geschwindigkeitsverteilung in groBem Abstande 

Abb. 48. Absolutstrémung um eine gleichmifig bewegte Kugel 
nach Lamb-Oseen ( = 0,4). 

Abb. 49. Absolutstr6mung nach Lamb-Oseen in grokerem Abstand 
von der Kugel (R = 0,4), 
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von der Kugel wiedergibt. Die Diskussion ist in Ahnlicher Weise durch- 
zufiihren wie im ebenen Falle. Um das Verhalten im Unendlichen fest- 
zustellen, miissen wir wieder 

ein parabolisches, durch 

r(1+ cos ?)=A_ begrenztes 

Gebiet herausheben, das etwa 

dem Kielwassergebiet der 

wirklichen Strémung ent- 

spricht. Auferhalb dieses 

Gebietes, in dem fiir r—>oo 

auch r(1-+cos #) unendlich 

groB wird, hat man fir 

die Geschwindigkeitskompo- 

nenten 

Lor =a. 
Ur => 4 os = 

r?sin + OF 2 72? 

dg==O- 

Die Str6émung geht also im 

vorderen Gebiet in eine ein- 

fache Radialstr6mung tiber, 

die so beschaffen ist, als 

‘ob sie hervorgerufen ware 

durch eine im Kugelmittel- 

punkt gelegene Quelle von 

der Starke 

q=67va. 

Im Kielwassergebiet, also 

insbesondere in der Nahe der 

x-Achse, wo kr (1+ cos #) 

als klein angenommen wer- 

den kann, haben wir 

Hier wirkt also der Quell- 

stré6mung eine entgegen- 

Abb. 50. Kurven gleicher Rotation bei der 

Stokesschen Str6mung um eine Kugel 

Abb. 51. Kurven gleicher Rotation bei der 

Lamb-Oseenschen Strémung um eine Kugel 

(R = 0,4). 

gesetzte, auf die Kugel zustrebende Stroémung entgegen, und die 

Geschwindigkeit im Unendlichen verschwindet hier wie der reziproke 

Wert des Radiusvektors. 
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Die Rotation der Flissigkeit wird 

(13) w=zua(l +kr)% e Borel, 

Fiir zwei in bezug auf die Ebene x=0 symmetrisch gelegene Punkte 

verhalten sich demnach die Wirbelstarken wie 

Whi Wy 
= e2k H il ; 

Im Gebiet hinter der Kugel herrscht also jedenfalls starkere Rotation 

als vor der Kugel. Die Stelle absolut starkster Rotation liegt auf dem 
ss a 

Kugelrand und entspricht einem Winkel #, etwas grofer als 3? der 

aus der Reynoldsschen Zahl nach der Gleichung 

g _1-Vi+4ha? 2-V4+R? 

EOS) 0 ti, ane . = 5 

berechnet werden kann. Wenn man etwa R=0,4, ka=0O,1 setzt, so 

wird cos J) =—0,1, also #% = arc cos 0,1 = 84°. 

Eine deutliche Vorstellung der Wirbelverteilung vermittelt die Schar 

der Kurven gleicher Rotation, die in den Abb. 50 u. 51 fiir den Stokes- 

schen und den Oseenschen Fall gezeichnet ist. 

§ 38. Anniiherungslésung der genauen Gleichung. 

Die im vorigen Paragraphen gegebene Lésung der Gleichung (3) kann 

weiter dadurch vervollstindigt werden, da man in der Entwicklung 

noch weitere Koeffizienten beriicksichtigt, oder noch mehr partikulare 

Integrale dem Ausdruck fiir ¥Y hinzufiigt. Die Annaherung an die 

strengen Grenzbedingungen kann dann beliebig weit gefiihrt oder der 

Fehler, den man begeht, kann mit beliebig hohen Potenzen von ka ver- 
haltnisgleich gemacht werden. Wir wollen uns im Anschlu8 an Burgess 
mit der Niherungslésung der genauen Gleichung (2), § 37 beschiiftigen, in 
der auch die quadratischen Geschwindigkeitsglieder vorkommen, weil wir 
erst dadurch instand gesetzt werden, eine zuverlissige Widerstandstormel 
zu gewinnen. 

Diese Gleichung erhalt in spharischen Koordinaten die Form 

(ie (Ov oO OF oO 

Forres Or ar aS) 

(1) 
iO oe eo sin? 0 ( 1 tl : 

2» 

7 sin? 9 (cos “Or. or OF, Or La r Oo\sind 04) | 

O sin o O \ | (0? yr sin + Oo f O a 
= Su} == = ——— \ = Uo (cos Or r zat lor r Ov fr =a3)| 0. 
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Wenn wir nun die gesuchte Niherungslésung nach Analogie mit dem 
bereits gefundenen Wert in der Form ansetzen 

‘P = sin? D[Ao + Arcos J], 

wo A, und 4; Funktionen von 7 sind und A, den Faktor ka enthilt, 

so ergibt sich durch Einsetzen und Vernachlassigung der zweiten und 

héheren Potenzen von ka 

2A, eG Anmeee Any eta /dtAgn POA. 1 

(2) ( ae rok (A r = r Ge 9? ‘| Cosa 

ie ,|%4o_ 4 @4y | 8dAy  84o , (dtd 120A, 24d4,) gl 
drt Go Oe rs dr ee as Pp dp | - d ce [ 

daher mu8 zuniachst das von cos # freie Glied verschwinden, also 

dA eed gtd 8 dA, 8A, 
(3) ie 72 GEE rs dr re 0; 

woraus sich fiir Ay die Form ergibt 

A 2 4. Ay = = + air + der? + asr*; 

die Funktion A, sin? # geniigt, wie man leicht feststellt, der Stokes- 

schen Gleichung DD 'Y=0. Wir kénnen im besonderen als A» den Faktor 

von sin? #? in der oben gegebenen Oseenschen Lésung nehmen, also setzen 

(4) Ao = bo(3 7 — “) =F hawor? 

Die Grenzbedingungen ergeben ferner fiir r=a 

(Aiy=a = 0, (=) = 

Aus den ersten beiden Gleichungen folgt 

(6) tet 2b, —tkauoa?; b= ever 2 ia): 

Wenn wir jetzt (4) in die mit (3) vereinfachte Gleichung (2) einsetzen 

mit Benutzung von 

dA, 2A, 6b, a _ 2 oa oe 

7 ar’ dr ar ar?’ 

2A) 740 — = — well + $ha)|1— 9S +95 
und die zweiten Potenzen von ka ania cre so ergibt sich 

d+ A 9 uka i 
(2a) rt a 1272 Ay 5 944s == A (Bar? — a’ — 27°). 

Miiller, Theorie der ziihen Fliissigkeiten. 10 
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Fiir A, erhalten wir dann 

(7) A = — 3 82 (ar — 807? + dr2a® — ar +f). 

Beachten wir die Bedingungsgleichung (5), so finden wir 

di == Il, ip 0F 

Dann wird 
3 U2 a/ oe 

(7a) Pe nl (Per ideae). 

Die Naherungslésung Y= sin? #(A +A, cos #) wird daher 
; x 

(8) P = 40 sin? d t + ka) (3ra _ <= } — kar? 

a pha cos H(1 = *) (2x2 +ra+ a) : 

Die daraus abgeleiteten Geschwindigkeiten werden aber im Unend- 

lichen nicht Null. Wenn wir jedoch den Ausdruck (8) mit der Oseenschen 

Lésung, die der Korrektion zugrunde gelegt wurde, kombinieren, d. h. die 

nicht in (8) enthaltenen Glieder dieser Lésung hinzufiigen, so entsteht 

Ug A sin? 
(9) P=+3yva(l +2kha)(1 — cos) [1 — e~ kr (1 + c08 9) — Z “( + 2ka) 

+ {3, uo kasin®.Pcos Bar + x —q?— a 

Bezeichnen wir die erste Oseensche Lisung mit Y und die jetzige 

mit YY, so haben wir 
4 

(9a) P=(1+fka) i+ {-wkasin? dcosd Bar =} = ye — =| : 

Wenn wir den Ausdruck fiir ¥Y mit = multiplizieren und die Rey - 
ZU o 

noldssche Zahl —°~ —R einfiihren, so ergibt sich 

Rr, ; 

gy Beak “4 (1+3,R)sin? d+ 12(1 +2, 8)(1 —cos9) | j= eae ee : 

+ 3; R2sin? I cosH|3 . ie 2 =1-(4)". 

Fiir die Geschwindigkeitskomponenten hat man die Werte 
35 

Y= — rl 1+ gha) {e~#r(t +0089) 1] + kr (1 — cos.9)] — 1} 

Ug a® F cost 38u ka 4 
yl) ar eae Le 8 Come 9) [3ar—at += -— 5), 

it (10) F 
IU, a ¢ 

Ug as (Lt ko) Sie PoE coe) 

EE 1+38 Ws, Ree duka. eee Ol ck 
4 1g, S12" cos) 3a — 7 othe |: 
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Beide Geschwindigkeiten werden Null fiir r->oo. Fiir r=a gehen 
die Ausdriicke in +» cos @ und — wy sin 3 iiber, wenn man die zweiten 
und hédheren Potenzen von ka und kr vernachlassigt. Bis auf die 
quadratischen Glieder stimmen die Ausdriicke (8) und (9) miteinander 
tiberein, woraus sich ergibt, da (9) in der Umgebung der Kugel 
der vollstandigen Differentialgleichung in dem verlangten Naherungs- 
grad geniigt. 

Die Rotation der Fliissigkeit berechnet sich aus der Formel 

1 Sor sind O ( 1 55)| 
IDM B MIR Se 

= 55 sin # 2rsin%| Or? r2 Oo\sind Ov 

Wir erhalten dann 

sin az 
w= Fua(l + kr) (1 ane 3 hp Cl —kr(1+ cos 9) 

(11) 
te See cere = — 2s). 

3 

Die Diskussion gestaltet sich in ganz analoger Weise wie in dem oben 

besprochenen Falle der ersten Oseenschen Naherung. 

§ 39. Vergleich mit dem Versuch; Kinflu®8 der Gefi®wiinde 

auf die Bewegung. 

Bevor wir einige weitere Folgerungen betrachten, diirfte es zweck- 

maBig sein, den gefundenen theoretischen Verlauf der Stromlinien mit 

der Erfahrung zu vergleichen. Eine Ubereinstimmung im Gebiet kleiner 

Reynoldsscher Zahlen, also groBer Zahigkeit und kleiner Geschwindig- 

keit, wirde dann als experimenteller Beweis fiir die Berechtigung der 

Oseenschen Methode zu gelten haben. In seinem Lehrbuch bespricht 

H. Bouasse?), leider ohne literarischen Hinweis, Versuche von Forté- 

paule, der Kugeln mit verschiedenem Radius (von 0,50 bis 50 mm) in 

einem mit Zuckersirup gefiillten GefaB (von quadratischem Querschnitt 

240 mm?) fallen 1a8t und das dadurch in der Fliissigkeit hervorgerufene 

Geschwindigkeitsfeld durch besondere optische Vorrichtungen zur un- 

mittelbaren Anschauung bringt. Die kleinen Luftblaschen in der beleuch- 

teten Meridianebene durch die Bewegungsachse hinterlassen bei ent- 

sprechender Kurzzeitaufnahme auf der photographischen Platte kleine 

Striche (Vektoren), die aneinandergereiht das absolute Stromungsfeld der 

Kugel ergeben. Aus der Linge der Striche kann ferner auf die Bewegungs- 

geschwindigkeit der Kugel geschlossen werden. Es ergibt sich, dal die 

Stromlinien um so unsymmetrischer werden, je gréBer die Geschwindig- 

1) H. Bouasse, Hydrodynamique générale, Paris 1928, S. 356—361. 

Oe 
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keit wird, da® ferner ihr Verlauf in einigem Abstand von der Kugel von 

dem aus der Theorie berechneten wesentlich abweicht. Wahrend hier die 

Linien divergieren und sich erst im Unendlichen schlieBen, umkreisen sie 

dort einen Wirbelring um die Kugel, dessen Abstand von der Achse etwa 

der beigegebenen Zeichnung (Abb. 52) entspricht und sich bei einer Ver- 

gréRerung oder Verkleinerung der Kugel nur wenig andert, aber bei Ab- 

nahme der Zihigkeit geringer wird. Mit wachsender Geschwindigkeit 

verschiebt sich der Wirbel aus der Aquatorebene der Kugel nach hinten, 

Abb. 52. Bewegung einer Kugel in ziher Fliissigkeit 
bei kleiner Reynoldsscher Zahl Roo 3,5 (Versuch). 

und das umgebende Strombild wird unsymmetrisch verzerrt. Ferner 
wird, wenn die Kugel sich in der Nahe der Wand bewegt, das ganze 

. - 
% Feld eine starke Veriinderung erfahren. Mehrere Bilder, die den Einflu8 

der freien Oberfliiche erkennen lassen, sind in dem Lehrbuch von 
Bouasse zur Darstellung gebracht. 

W.E. Williams} ahnli S ae 2 ) der aihnliche Versuche gemacht hat, verwendet 
als Flussigkeit eine Mischung von Wasser und Glyzerin. Die Kugel wird 
hier mittels eines diin i li Is eines nen Verbindungsstiickes an ei SS einem fahrbar 
einen Motor angetrieb G i ane or angetriebenen Gestell befestigt und so durch die in einem 

1) W. E. Williams, On the motion of a sph i i 
rs : : Tee Tice es phere in a viscous fluid. Phil. 
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rechteckigen Trog befindliche Fliissigkeit hindurchgezogen. Die Be- 
wegung der Fliissigkeit wird durch beleuchtetes Aluminiumpulver, das 
dem Glyzerin beigegeben ist, sichtbar gemacht. Die Kugel hatte bei 

diesen Versuchen einen Radius von 1,25, 0,88 und 0,40cm; die ver- 

wendeten prismatisch gestalteten GefiBe hatten die Abmessungen 

10x10x9cm bzw. 46x18 x17 cm. 

Wie auf den Bildern von Fortépaule, zeigen auch hier die absoluten 

Stromlinien eine zirkulatorische Gestalt zum Unterschiede von dem von 

Stokes und Oseen angegebenen Resultat der Theorie. Das in Ruhe be- 

findliche Zirkulationszentrum riickt bei wachsender Reynoldsscher Zahl 

weiter nach hinten, wahrend das Stromliniensystem die fiir R—>0O sym- 

metrische Anordnung aufgibt. Man erkennt aber schon aus einer ein- 

fachen Uberlegung, da die Umkehr der Stromlinien zur geschlossenen 

Form durch die GefiBwandung bedingt ist (vgl.§ 34, 8. 126). Denn da 

der GesamtfluB durch eine Ebene senkrecht zur Bewegung verschwinden 

mu, so muB die Vorwirtsbewegung der Flissigkeit durch eine Riickwarts- 

bewegung kompensiert werden, also jede Stromlinie die Ebene zweimal 

nach verschiedenen Richtungen durchschneiden. 

Dieser Einflu8 der Bewegung wird nun, wie Williams gezeigt 

hat, durch die Rechnung bestatigt. Eine einfache Lésung der Be- 

wegungsgleichungen kann man insbesondere fiir die Bewegung der 

Kugel in einer zahen Fliissigkeit erhalten, die von einer groferen kon- 

zentrischen Kugel begrenzt wird. Fiir die langsame Bewegung (R=0) 

haben wir z. B. nach § 34 die Gleichung 

(1) DD'F=0 

zu losen, wo der Operator DY in Kugelfunktionen die Form hat 

av sing 0 1 ee 
Ua = = ss ; : 

D P 7 Or ie Ov sin # Ov 

Die Grenzbedingungen besagen, daB die Geschwindigkeit Null wird auf 

der Oberfliiche der AuBeren Kugel und gleich der Fortschrittsgeschwindig- 

keit wo auf der Oberfliche der inneren Kugel. 

Wenn a und R den inneren und aiueren Radius bedeuten, so hat 

man fiir r=a 

ae ome ji 
= ua*sin dcos it, Paes + upasin® a, 

und fir r= = 
ep 

ly, ny, 
Or 

Setzt man fiir Y%—Y¥ der Gleichung (1) die Form 

(2) Py = Uo sin? AF + Br+Cr?+ Br), 



150 Zhe Strémung in der Umgebung geradlinig bewegter fester Korper. 

so wird (1) fiir alle Werte der Konstanten 4, B, C, # erfillt. Um das 

Resultat mit einem Versuch von Williams vergleichen zu kénnen, setzen 

wir a=l, R=5,7. Dann ergeben sich fiir die Koeffizienten die Werte 

A=—0,413, B=1,237, C=—0,325, H=0,00339, und wir haben also 

0,413 
r (3) vy uosin® }(— +.1,2377r — 0,325 7? + 0,00339r4). 

Da bei der Williamsschen Versuchsanordnung die Geschwindigkeit 

im Abstand r=5,2a vom Kugelzentrum bereits Null ergab, so wird 

durch (3) die Strémung auch im Fall einer prismatischen Begrenzung 

angenahert richtig wiedergegeben. 

Zur Herstellung der zweiten Naiherung haben wir die Gleichung (2) 

des § 37, namlich 

(La) (ve + by ¥ = =e) DP=yDD*¥, 

zu integrieren. Die vollstandige Lésung setzt sich zusammen aus Wp, 

der Stromfunktion der langsamen Bewegung einer verschwindenden Rey - 

noldsschen Zahl und einer Korrektionsfunktion ¥,, also 

pS pe 

Nimmt man auf die Kleinheit von YW, Riicksicht, so erhalt man die 

Differentialgleichung 

VDD FE =\ v2 S +v obs **) Dip 
aT Gia ey) ana) = 

Setzen wir Wo=y7o(r) sin? 0, Y= 41(r) sin? & cos @, so ergeben sich 

nach der Rechnung von Williams fiir 7) und y, Ausdriicke von der Art 

AB 

or 

Uo A 
Zo= to, + Br+Or'+Br'); yA oes ! 7B*r+4OBr'—4EBr4| 

(4) F 
+10 (7 + Gr + Hre + J). 

Wenn wir dasselbe Beispiel zugrunde legen, erhalten wir auf Grund 
der Grenzbedingungen aufer den bereits ermittelten Werten von A bis D 

F=—0,0171, J= — 0,824, G=0,0224, H=0,000166. 

Der entsprechende Verlauf der Stromlinien ist fiir die Reynoldssche 
Zahl R= 2 in der Abb. 53 zur Darstellung gebracht, und man sieht die 
qualitative Ubereinstimmung mit den Versuchen. Um die Lage des Wirbel- 
zentrums im ersten Falle der langsamen Bewegung zu bestimmen, hat man 

0 (A . A pe(p + Br + Or + Dr!) = —44+B+20r4+4Dr9 =0 
zu setzen. Man erhalt mit den angegebenen Werten der Konstanten 

PSD PY 
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Abb. 53. Stromfeld fiir die Bewegung einer Kugel innerhalb einer gréBeren Kugel 

‘bei der Reynoldsschen Zahl R=2. (Nach Williams.) 

Abb. 54. Stromfeld um eine gleichférmig im Wasser bewegte Kugel 

bei einer Reynoldsschen Zahl 125. (Versuch von Williams.) 

Durch die Theorie wird bestitigt, daB das Zirkulationszentrum mit 

wachsender Reynoldsscher Zahl nach hinten riickt. Die mit groBeren 

Kennzahlen angestellten Versuche (vgl. Abb. 54) zeigen ferner, daB die 

Unsymmetrie sich weiter vervollstiindigt, und der Wirbelkern dem Ur- 
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sprung des sogenannten Kielwassers sich nahert, in dem die Stromlinien 

der Bewegungsrichtung parallel laufen, also eine nahezu gleichmaBige 

Bewegung herrscht. Die weitere Verfolgung der Stromung fiir den turbu- 

lenten Fall wird spateren Kapiteln vorbehalten bleiben. 

§ 40. Berechnung des Widerstandes. 

Um den Widerstand der Kugel in der zihen Stromung zu bestimmen, 

beschrinken wir uns zunaichst auf die erste Naherungslésung der ge- 

kiirzten Oseenschen Gleichung, die wir nur noch vervollstandigen 

miissen durch Angabe der Druckfunktion. Fiir die Beziehung zwischen 

Geschwindigkeit und Druck haben wir 

() (4+245,)0= 
Bildet man die Divergenz dieser Gleichung und vertauscht man die 

Operationen, so erhalt man 

ap) 

Benutzt man die oben gegebene Teillésung, die der Stromfunktion Y’ 

und der Potentialfunktion ®’ entspricht, so erhalt man aus (1) das parti- 

kulaire System ; 0g’ 
De) P= Uo a 

Mit den oben berechneten Konstanten ergibt sich daher 

3 cos + na. . 
(2) P= 3 0U0va —— — 70%, —; (3 cos? F— 1). S 

Der Widerstand berechnet sich durch Integration der auf ein Element 

der Kugelflache wirkenden Spannkrafte. Zwei benachbarte, zur a-Achse 
PVA tr re WT ea i Se f senkrechte Ebenen bestimmen auf der Kugel eine Ringflache von der GréBe 
Tie 5 . é 

2za?sinddd. Bezeichnet man die w-Komponente des zu einem Punkt 
dieser Flache gehérigen Spannungsvektors mit T,.,., so hat man fiir die 

Resultierende aller tangentialen Krafte den Ausdruck 
7 

W = ve 7t a Tra sin oa J 4 

0 

; 1 z 
Nun ist Tra = Og t+ Tay a ae 3 a Via al Yr 

Setzt man hierin die friiher angegebenen Werte ein, so kommt 
; ; Ov, y (Ov, Ov 2 (Ov a) Tre = COS 5|= ete iC v2) wr 4 4 sc Rec nay a P Oe oi r ay oe aay Ge a5 

Paice ; OV» 1 i @ 
= p cos ee ll ae Ll re Va + UU uae (ave + Yvyt ZVz) 

Ov, 1 Ov U0 
= — peos vy + 1 —* — tt — yy sels dae P Or eat Va Tr lt Ox + lt re 
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° - ‘ q. 

Mit Uz = or cos 3 — vg sind, —" = "cos 3 — — 
uv D 

geht der Ausdruck fiir 7,.,. tiber in 

(3) Tra = — pcos ++ 21.008 #5" — 1 sin a 

Die beiden Ausdriicke | 

ects 1 [0vg OG. Dy 

ERS ees vg (3 a r Ot 4 

Ovg i Ov, V4 

Or r O« yr} 

sind nattirlich nichts anderes als die normale bzw. die tangentiale Ver- 

zerrungskomponente. Bezeichnet man die entsprechenden Spannungen 

mit o, und T,,5, so hat T,¢ die Form 

Tra = Or COS S — Trg Sin J. 

Der Widerstand setzt sich also aus drei Teilen zusammen 

7 

Wi =— 22a*/pcos sin Id, 

7 
2 Ov, . € 4 (4) We =4urae] 52 cos J sin Fd it, 

0 

a) il @a vd =e : 2 Cvs VU; da Seo G C 

Ws= 2usa®| (5 ANG z )sin FAD. 

0 

Wenn wir die Geschwindigkeiten aus der Stromfunktion ableiten, so 

erhalten wir 

(e =) a ae con 3 Uo (1 —e—ka(1+cos 9)) 4 aie e~kad+ cos 7) 

T=a a a 
Or 2 ka? 

ab 2 uk sin? Fe— hea + cos?) : 

(V5)r—a = — Uo Sind, 
(5) é v, a ‘ : , 9 

! = $ Uo Sin J — suo sin Fe~ Kall + 08 9) 
OF |p=a 

— 2ukasin K(1 — cos 9) e— Fat + cos) , 
Ovg. ey 

2 = 2 — gin ws 
Or T=a a 

Entwickeln wir die Exponentialfunktion und unterdriicken die ersten 

Potenzen von ka, so ergibt die Auswertung der Integrale (4) in erster 

Annaherung 

W,=2unraw, W2=0, Ws=—4u7 au, 

also 

(6) W =6u7au. 

Das ist derselbe Widerstandswert, den zuerst Stokes fiir die lang- 

same Bewegung der Kugel gefunden hat. Bei kleinen Reynoldsschen 
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Zahlen ergibt sich also jedenfalls eine Proportionalitat des Wider lance. 

mit dem Reibungskoeffizienten, dem Radius und der Geschwindigkeit. 

Wenn wir die zweite Naherung zugrunde legen, dann tritt, wie wir leicht 

erkennen, noch der Faktor 1+ ka zum Widerstandswert hinzu. Wir 

erhalten dann den zuerst von Oseen angegebenen Ausdruck 

3 OC) 
(7) W =67 Haul 4 ka) = Grpawe(1-+ 3"): 

aod 
Wenn wir die Reynoldssche Zahl R= einfiihren und 

W = cw $0U,- ma” 

setzen, so ergibt sich fiir den Widerstandsbeiwert c,, die Formel 

2 
(7a) Cy = R 

die, wie sich zeigen wird, fiir kleine R (<1) mit den Versuchen gut zu- 

sammenstimmt. 

§ 41. Einflu& der Wiinde auf den Widerstand und Vergleich 

mit der Messung. 

Wenn die Fliissigkeit, in der die Kugel sich bewegt, von festen Wanden 

begrenzt wird, so wird der Widerstand im allgemeinen eine VergréBerung 

erfahren. Zur Bestimmung des Wandeinflusses kann man sich etwa der 

von H.A. Lorentz!) ausgebildeten Spiegelungsmethode bedienen, die 

wir in ihren Grundgedanken wiedergeben wollen. Sei ein stationarer 

Bewegungszustand S) mit der Geschwindigkeit vo (vo,,, Voy Vp.) und eine 

etwa mit der yz- Ebene zusammenfallende Wand gegeben, so kénnen 

wir den an der Wand gespiegelten Bewegungszustand S, aufsuchen, dem 

die Geschwindigkeit 1 (v,,,, V2,, V3,) entspricht. Zeichnen wir die Wand- 

werte durch Umklammerung aus, so haben wir 

(1) (Vo x) = — (v1.2), (voy) = (V1y), (Vo z) = (U2). 

Daraus leitet sich dann der durch Reflexion an der Wand entstehende 
Zustand S, ab, fiir den die Bedingungen gelten 

(2) (v2) = (v1.2), (v2y) = — (vry), (v2 2) = — (v2), 

der also mit dem urspriinglichen Zustand superponiert die Geschwindig- 
keit lings der Wand zum Verschwinden bringt. 

Haben wir z. B. eine Kugel, deren Radius a klein ist gegen den Ab- 
stand / von der Wand, und die sich auf der w-Achse mit der Geschwindig- 

") H. A. Lorentz, Abhandlungen iiber theoret. Physik, I. Bd., Leipzig 1907, 
8. 23—42, 
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keit uw) bewegt, dann bezieht sich der Zustand S. auf die Bewegung 
einer Kugel im Punkt x=—l1, die mit der Geschwindigkeit —w) nach 
der entgegengesetzten Seite fortschreitet. S) und S, sind aus der Stokes- 
schen Lésung sofort angebbar. Fiir die Bewegung S. haben wir dann 

Ov x Op Da = a) 1% se el 

Sam oe ” On ee On” 

5) 204 

Oy = —Ohuy ae Z oP 
(3) Oy ue oy 

OY, , wOD oe == > taht if if 1 V22 Viz aS, Bry 2? 

0. } 
pez Lp + 20 Pt 4, 

wie man leicht feststellt, wenn man z=0 setzt und die Werte in die 

vereinfachten Stokesschen Gleichungen einsetzt. Wenn man auf die 

Kleinheit des Verhaltnisses * Riicksicht nimmt, so erhalt man die 

Lorentzsche Naherungslésung fiir die Bewegung S,, namlich 

i e+e? 6la(a +1)? 

Van = — gatle|—- + mee a 

x—l 6lay(a +l 

o gee ee S| 
—l)z 6laz(~a+l1 

Cee ae} = =F I, 

wo r den Abstand eines Punktes vom Mittelpunkt der gespiegelten Kugel 

bedeutet. Fiir den Mittelpunkt der Kugel haben wir x=1, r=21, also 

ee Voy = Vez=0. 

Die relative Geschwindigkeit der Kugel gegen die Fliissigkeit wird 

also um 2" uo vergréBert. Als Naherungswert des entsprechend ver- 
oa 

eréBerten Widerstandes erhalten wir 

9 
(5) W = 6x wauo(1 +3 +). 

Fiir den Fall, da sich die Kugel parallel zur Wand bewegt, gibt 

Lorentz den Wert Gap 

(6) W =6xpaw(l+i6 7) 

an. Fiir die Anwendungen sind besonders die Fille wichtig, daf sich die 

Kugel in einem von parallelen vertikalen Wanden oder in einem von einer 

zylindrischen Wand begrenzten réhrenférmigen Gef&l bewegt. Wie oben 

lassen sich auch hier die verschiedenen bisher angegebenen Korrektionen 
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“ se 
durch einen Zusatzfaktor f ausdriicken, der etwa unter der Voraus- 

setzung, daB sich die Kugel in der Mitte zwischen zwei um 2 / voneinander 

abstehenden Ebenen bewegt, als eine Funktion 17) des Quotienten + dar- 

zustellen ist, die sich fiir groBe Werte von / der Einheit nahert. R. Laden- 

burg!) verwendet die Lorentzsche Methode, um den EinfluB der Wande 

eines kreiszylindrischen, beiderseits durch ebene Grenzflachen abge- 

schlossenen GefaiBes auf die Bewegung einer Kugel darzustellen, indem er 

die Zustiinde superponiert, die durch Reflexion der urspriinglichen Be- 

wegung an den Flachen und dem Korper selbst entstehen. Dabei gentigt 

es in erster Annaherung, die Einfliisse eines unendlich langen Zylinders 

und zweier paralleler Ebenen gesondert zu behandeln. Sehen wir von 

der ebenen Begrenzung des Zylinders ab und nennen # den Radius des 

Zylinderquerschnittes, so erhalt man fiir W den Wert 

(7) W =6apauo(1+ 2,4 p)- 

Auf direktem Wege hat ferner H. Faxén?2) die Korrektur des Wider- 

standes fiir einige Falle ermittelt. Fitir den Fall, daB die Kugel in einem 

zylindrischen GefaB langs der Achse fallt, findet er z. B. 

61 Ua 

-L (Rk) +2,09(2.) — 0,95 
(8) W =————. 

R 
1—3ak— 

Up 
wo are L(0)==25104, £,(0;5)= 76, F(1)=148 -L(2)— 1.04: L(5)=0,46 

zu setzen ist. 

Die entsprechenden Versuche beziehen sich auf die Fallbewegung 

kleiner Kugeln in Wasser oder einer ausgesprochen zahen Flissigkeit. 

Wenn die Kugel unter dem Kinflu8 ihres Gewichtes in der Flissigkeit 
fallt, so ergibt sich fiir die Endgeschwindigkeit, wenn 0, die mittlere 
Dichte der Kugel bedeutet, mit Benutzung von (6) § 40 der Ausdruck 

. oe nee em : Uy Q ees der natiirlich nur giiltig bleibt, solange —°~ klein ist. Wenn t die Zeit 7 
ist, die eine Kugel braucht, um eine gleichbleibende Strecke s zu durch- 
fallen, und das Gewicht der Kugel in der Fliissigkeit <2(0i—0)a3g =G’ 
gesetzt wird, so hat man ‘ 

pe TES 
a G' 

1) R. Ladenburg, Ann. der Physik, 4. Folge, Bd. 23 (1907), 8. 447—458. 
*) H. Faxén, Diss. Arkiv for mat., astr. och fysik i ; waste: ysik 17, 1923; Ann. d. Ph 

4, Folge, Bd. 68 (1922), S. 89—119. ay 
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Ladenburg benutzt in seinem Versuch Stahlkugeln mit einem Durch- 
messer 1,5—4mm in einer filtrierten Lésung von drei Gewichtsteilen 
Kolophonium mit einem Teil Terpentinél, der etwa die Reibungszah] 

= 1400 a entspricht. Der starke Einflu8 der Wande tritt deutlich 

zutage, wenn man die Fallzeiten bei der gegebenen Fallstrecke s—20 em 
fiir verschiedene Werte / bestimmt. Man erhilt dann: 

I | Aon | 7,94 em | anes 

t | 4055 s | 3924s | 3858 s 

H. Faxén priift seine Formel an den MeBresultaten von Westgren, 

der kleine Kugeln von Mastix oder Gummigutt in Wasser fallen laBt. 

Wenn wir aus dem gemessenen Wert von ¢ die Fallzeit 

t 6a uas 
t= f —— G’ 

fir den Fall, da8 keine Wande vorhanden sind, berechnen, so miiBte 

sich fiir jede Kugel bei verschiedenen Verhaltnissen + ein konstanter 

Wert t) ergeben. Wie die Tabellen von Westgren!), die hier auszugs- 

weise fiir zwei Versuche wiedergegeben sind, zeigen, trifft das etwa bis 

VAN * < 0,3 zu. Fir gréBere Werte von + ergeben sich etwas zu hohe 

Werte von fo. 

Tabelle von Westgren. 

Eine Erschwerung der Versuche ist die groBe Empfindlichkeit der 

Zahigkeit gegeniiber der Temperatur, auf die bereits hingewiesen wurde. 

Ladenburg benutzt ferner die Fallmethode, um den Hinflu8 des Druckes 

in einem Gebiet von 1—200 Atmosphiren zu ermitteln. Wenn die Fall- 

dauer etwa bei gewéhnlichem Druck 842s betragt, so ergibt sich bei 

einem Druck von 200 Atmosphiren ein Wert von 3770 s. 

1) Westgren, Ann. der Physik, 52 (1917), 8. 308. 
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Was die Widerstandsformel fiir die Kugel selbst angeht, so haben 

wir bereits in § 40 den entsprechenden Beiwert in Abhangigkeit von der 

Reynoldsschen Zahl R ens angegeben. Aus der Stokesschen und 
y 

der genaueren Oseenschen Formel ergeben sich die Werte 

24 24 3 
Cu, = RR? Cw, = a (i +36 %)- 

Tabelle fiir die Widerstandszahlen von Kugeln. 

a Cw Cw | Cw | Cw R 2 ial 
R Stokes | Oseen Ladenburg_ Faxén _ Versuch 

0,0531 | 0,1131 | 0,020 | 451,2 | 4565 | 4538 | 4594 | 475,6 
0,2437 | 0,1936 | 0,084 | 98,48 | 103,1 101,2 105,1 109,6 
0,7277 | 0,1750 | 0,031 | 32,98 | 38,23 | 36,11 38,29 38,82 
1,493 | 0,2005 0,036 16,07 | 22,32 | 17,88 | 19,26 19,40 

Die beigegebene Tabelle gibt diese theoretischen Widerstandszahlen, 

ferner die auf unendlich ausgedehnte Flissigkeit nach den Ladenburg- 

schen und Faxénschen Formeln umgerechneten Zahlen im Vergleich mit 

neueren und sehr genauen Versuchsresultaten von Schmiedel?), die sich 

beziehen auf die Bewegung von Stahl- und Aluminiumkugeln von ver- 

schiedener Grofe in einem zylindrischen GefaB mit emem Durchmesser 

von 5,6cm, das mit einer Mischung von Wasser und Glyzerin gefiillt ist. 

Die Ubereinstimmung der Versuchswerte namentlich mit der Faxén- 

schen Formel, kann als gut und als eine Bestatigung der theoretischen 

Grundlagen im Bereiche kleiner Reynoldsscher Zahlen betrachtet 

werden2). 

§ 42. Das Widerstandsgesetz fiir gré®ere Geschwindigkeiten. 

In dem zunichst von der Theorie erfaBten Bereich hat die Strémung 

einen laminaren Charakter, d.h. sie besitzt tiberall ein System gleich- 

bleibender Stromlinien, lings derer die Fliissigkeitsteilchen relativ oder 
absolut zu dem bewegten Korper fortschreiten. In diesem Bereich kleiner 
Reynoldsscher Zahlen oder dem Stromlinienbereich (régime currenti- 
ligne), zu dem insbesondere der Stokessche Bereich kleiner Geschwindig- 
keiten gehort, gilt das im vorigen Abschnitt behandelte Widerstands- 
gesetz, d. h. das Gesetz einfacher Proportionalitit des Widerstandes mit 
der Geschwindigkeit und dem Radius. Im turbulenten Bereich dagegen, 

*) H.Schmiedel, Diss. Leipzig 1928; L. Schiller und H. Schmiedel, 
ZS.F.M. Heft 21, 1928. 

*) Weitere Literaturangaben finden sich im Handbuch der Experimentalphysik, 
Bd. IV, 1. Teil, 8. 224—231. 
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das durch das Fehlen geordneter Flissigkeitsbahnen charakterisiert ist, 
wird der Widerstand etwa mit dem Quadrat des Radius und der Ge- 
schwindigkeit wv) sich Andern. In diesem Gebiet nahert sich also der 
Widerstandsbeiwert c,, mehr einer Konstanten. Manchmal nimmt man 
auch einen Zwischenbereich (régime intermédiaire) an, fiir den der 

Widerstand bei gleichbleibender Zahigkeit mit 

Ud | Uoa 

proportional ist. Wenn man eine Kugel in einer zaihen Flissigkeit fallen 

laBt, so wird die Endgeschwindigkeit im laminaren Bereich mit dem 

Quadrat des Radius, im Zwischenbereich mit dem Radius a selbst und 

im turbulenten Bereich wegen 

<7(01 — 0)ga® =kcwoma'ur 

mit der Wurzel aus dem Radius verhaltnisgleich. Der Wechsel in der 

GesetzmaBigkeit des Widerstandes lat sich durch Fallversuche be- 

statigen, worauf wir hier nicht naher eingehen wollen?). 

§ 43. Die beschleunigte Bewegung der Kugel in der ziihen 
Fliissigkeit. 

Das Problem der mit veranderlicher Geschwindigkeit in der zaihen 

Flissigkeit bewegten Kugel bietet im allgemeinen gréBere Schwierig- 

keiten, die nattirlich erheblich anwachsen, wenn man gréfere Reynolds- 

sche Zahlen beriicksichtigt. Fiir den Fall der langsamen Schwingung 

einer Pendelkugel hat bereits Stokes?) einen Ansatz gegeben und zugleich 

das Gesetz des Fliissigkeitswiderstandes bestimmt. Die vollstandige nicht 

stationire Gleichung fiir die Stromfunktion lautet 

Vogel (0 Cp 2a 
(1) D|D® Es ar) = (Mag + ay yO 

Bei Vernachlassigung der quadratischen Glieder bleibt 
ia 

(2) p(p¥—*+S7)=0. 

Wenn wir nun annehmen, da8 die Translationsgeschwindigkeit durch 

eine Exponentialfunktion gegeben sei, also 
2y 

(3) u=ue""t, 

1) Vgl. auch W. Bauer, Das Widerstandsgesetz schnell bewegter Kugeln im 

Wasser. Ann. der Physik, Bd. 80, 4. Folge, 1926; C. Ramsauer, Hinflu8 freier 

Oberflichen und fester Wande auf schnell bewegte Kugeln im Wasser. Ann. der 

Physik, 4. Folge, 1927, 8. 721. 

2) G. Stokes, Camb. Trans. t. IX, 1851. 
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so konnen wir dem Stokesschen Ansatz entsprechend fiir die Strom- 

funktion einen Ausdruck 

(4) Po = Ue” ty (7) sin? wd 

einfiihren. Es ergibt sich dann fiir die Funktion yo, wenn a der Kugel- 

radius ist, 

eee 
Ar} J 

In der Tat gentigt 7o der 

Gleichung(2). Ferner stellt 

man mit Hilfe der friiher 

gegebenen Formeln leicht 

fest, dai die Geschwindig- 

keit v, in der x-Richtung 

fiir r—=a den Wert wp an- 

nimmt. 

Das in der Abb. 55 

fir a=1, A=1 gezeich- 

nete augenblickliche Ab- 

solutstrombild hat eine 

gewisse Ahnlichkeit mit 

dem Geschwindigkeitsfeld 

in der Umgebung einer 

Kugel, die sich gleich- 

formig in einer nach auBen 

begrenzten Fliissigkeit be- 

weet (Abb. 53). Das Ge- 

samtfeld stellt eine Zirku- 

lation um eine kreisring- 

y formige Kernlinie dar. Der 

Radius des Wirbelringes, 

dessen Ebene senkrecht 

steht auf der Bewegungs- 
richtung und den Mittelpunkt der Kugel enthalt, betragt fiir den bezeich- 
neten Wert von A etwa 7)>=2,3a. Da in jedem Punkte der Kernlinie die 

Abb. 55. Absolutes Stromfeld fiir die beschleu- 

nigte Bewegung einer Kugel in ziiher Fliissigkeit. 

Geschwindigkeit gleich Null ist, so haben wir (2) =0. ere 

Um nun eine weitere Anniherung an die Lésung der vollstindigen 
Gleichung (1) im Falle der nach (3) beschleunigten Bewegung der Kugel 
zu erhalten, setzen wir 

yp — Bo = Ps 
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und erhalten dann bei Vernachlassigung der Glieder hoherer als 
2. Ordnung 

LOGND Ui" 6 0 Qv, 1 (6) D(DP,— : valle : [vs — 4 Wa 72) D'¥o == DD, 
oy 

In Kugelkoordinaten stellen sich die Operationen D und D’ nach § 8 
folgendermafBen dar: 

art > da\sindas 
0 0 2u 2 v. 

D!=vr>—- + v9 " “ 
"Or v9 roo 

| oO? sind O | 1 3) 

ctg wh = = 

Die rechte Seite von (6) ergibt eine Funktion von der Form 

] ou : 
= D(r)uee?”?tsin? dcos 9, 

wobei 

, 4, i O(r) = 42 PF — 29 p —-*e- 

und 

7 2 

Uo 6 akan 

zu setzen ist. Wahlen wir daher fiir Y, den Ausdruck 

] 542) ; 
(8) P= — use?” ty, (r) sin? .Fcos A, 

so ergibt sich durch Substitution in (6) mit Benutzung von (7) 

6 2y : 972 . 

(9) D V(r) — ae (r) — 212 y1(r)| e?? "sin? d-cos J| = P(r\e2”"tgin?. Pcos?. 

Mit der Abkirzung 

i AW c (10 i222 =S0 
wird 

(11) © 860. 
Wir haben also aus der Gleichung (11), in der ® eine bekannte Funktion 

ist, € und dann aus (10) die Funktion 7,(7) zu bestimmen. 

Beide Differentialgleichungen werden in gleicher Weise dadurch be- 

handelt, daf man die Lésung als Produkt einer partikularen Losung der 

entsprechenden homogenen Gleichung und einer unbekannten Funktion 

ansetzt, die dann durch einfache Quadratur bestimmt werden kann. Hine 

Lésung der Gleichung 

lautet nun 

Miiller, Theorie der zihen Fliissigkeiten. lla 
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Setzt man also ES S11), 

so geht (11) iiber in En” +2619 =O), 
/ ¢ " oe . 

Setzt man 7/=u-v und &)0 +2& v=0, so wird 

a a 
VU =z — = 

ES Lie 
und daher wegen S,u'v = P(r) 

ae 
u=O+ alr Par 

: [rs Derdr. 
pes 

} 1 
b= De Ce 

7 / 

Durch nochmalige Integration und Multiplikation mit = 7° ergibt 

sich dann 
“ ‘d rahe fe (12) s=rlo rola | a [Par] 

Um die Gleichung (10) zu lésen, benutzt man das partikulare Integral 

rir) = o- Var lo 227 ayo 4. 3 (13) Coy e~Ir 2424 3/2 — + | 
und findet dann wie oben, wenn man r° durch €(r) und @ durch &(r) 

ersetzt, : = ore 
e ; Ly ae bee : 

(14) w~a(r) = C(r) lz tr B| 2(r) | B al C(r)s (dr) : 

Die Stromfunktion ¥Y kann dann’ in der Form geschrieben werden 
9 

Dy Soe. a Up 522 - : 
(15) P= ue” t yo (r)sin? J + —e2”"t y, (r)sin? Fcos.F 7 

=A 9 ¢ [ U aL —— (i) sihov- a) x0 (r) + — x1 (r) cos a). - 

W.E.Williams hat zur Konstruktion des Strombildes die Werte der 

Funktionen y) und y, fiir zwei Werte von 2, A=0,09 und A=1 und fir 

eine Reihe von r-Werten berechnet. Es ergibt sich dann in Ubereinstim- 

mung mit dem Versuch, dafi das Stromliniensystem mit zunehmender 

Reynoldsscher Kennzahl seine Symmetrie in bezug auf die Mittelebene 

mehr und mehr verliert. 

§ 44. Eine momentan aus der Ruhe in Bewegung versetzte 
Kugel in der ziihen Fliissigkeit. 

Wenn wir wie im vorigen Abschnitt sphirische Polarkoordinaten 
zugrunde legen und die Bewegung als gleichmaBig voraussetzen, so haben 
wir zu verlangen, dafi fiir einen von Null verschiedenen Wert von ¢ an 
der Oberflache der Kugel die Bedingungen 

1 oY Lao 
(1) ie Ms . 

U1 eae a TGs LO COB, eo : —— "asin + OF aa J asin? Or Uo Sin 
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erfillt sind, und die Geschwindigkeit im Unendlichen gegen Null konver- 
giert. Bei Vernachlassigung der quadratischen Glieder der Grundgleichung 
k6énnen wir die Stromfunktion Y setzen 

(2) GE (y1 —{- Y2)sin? aD, 

wo 7, und vy, Funktionen von r und ¢ sind, die den Gleichungen!) geniigen 

OF oy, 2 Ory, 28; 1 0%, 

(Sa) Ore 72 0, 3b) Or ry OE 

Nach § 28 kénnen wir fiir (3a) eine Partikularlésung in der Form 

anschreiben © r,’ 

Va | re 4 4y=——|o(aje *%*da. (4) Ae ip (a) 
0 

Setzen wir ferner yamre ee, wo w eine Funktion von 1 ist, so 

ergibt sich der Ausdruck 

rw = Acosh(r—a+a), 

in dem A und a Integrationskonstanten bedeuten. Man hat dann 

ra) —2yt Z 

(5) Oa Nees -cosA(r —a-+a). 

Integriert man nun in bezug auf die Variable 4 zwischen den Grenzen 0 

und oo, indem man die trigonometrische durch die Exponentialfunktion 

darstellt und die bekannte Formel benutzt 
+ 90 —— 'p2 

292+n] 4 Le ie 
feePerrg a ECL 

— © 

so erhélt man eine weitere Losung 

= a+ a)? Arya 0 ( } -——— 
6 i e Aut F 

( ue QV vt Or 

Ersetzt man ferner A durch F(a) und integriert zwischen denselben 

Grenzen, so erhalt man die Lésung 

= Be (r—atey? 

Dy agers: 
2¥rvt Orj 7 

0 

Ausfiihrung der Differentiation und partielle Integration ergibt 

. (r—a+ a)? oe |. (7a) mS _(@- al ; 

= — 3) 5, POs re]. Ave dats] 4] Poe 4vt 

0 

1, Vgl. A. B. Basset, A Treatise on Hydrodynamics, P. II., Cambridge 1888, 

S. 286 f. 

(7) xe 

0 

ities 
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Wenn man jetzt F(a) so bestimmt, daB F(0)=0 und F(a)e—-?= 0 wird 

fiir a— oo, so verschwindet der letzte Teil des Ausdrucks fiir v2, und es 

bleibt im ganzen 

(3) aa 2 aah 5 (r—a+ a)? 
pe ae [plae aa =e sin? 3/7 (2 +F'(@))e 44t da. 

0 0 

Bildet man die Geschwindigkeitskomponenten, so ergibt sich durch eine 

geringe Umgestaltung der Integrale, daB der Ansatz 

i 3 , 
F(a)= wee po) — = (a? + 3aa+ a?) 

die Randbedingungen (1) erftillt. Das laBt sich auch auf folgendem Wege 

direkt nachweisen. Die Stromfunktion erhalt dann namlich die Form 

ee «2 
Up asin? > a 

pe — [4 w+ 3ac+a?)e Std a 
2rVavt 

0 

3 feo) r—a+aP 

Uyasin? + /"/ cc? eae een bales ‘fle ale da. 
2Vavt “1 

0 

Setzt man im ersten Integral 5 iat im zweiten Integral r—a+a 
2)2 

= 2q)rt, so kommt 

Uy @ Sin? /* = 
eye : ee + l2Zaqg|vti+ 2a?/vt)e—"dq 

arya 

0 

3u,asin® # ["/ 1 yea ay | 2 al ah ies (2qvt—r+aq + 2qyvi—r+ aye" fdq. 

ra 
2Vve 

Die vorkommenden Integrale lassen sich auf elementare Funktionen und 
auf das Fehlerintegral 

q = 

fe-*dq="" Fi) 
0 

zuriickfiihren. Man erhalt zunachst unmittelbar oder durch partielle 
Integration folgende Formeln 

fo) 

I= fe-#ag ale (1 — Fe(qo)], 

70 
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Ja= [qe *dq = —3[e-#] = be, 
q% 0 

Jo= fare Pdg = — Lege) +3 [e-Pdq= bge~ + 2] [l — Folge) 
; Jo i 
0 qo 

Wegen F’,(qo)=0 ergibt sich also 

¥ f of 29. [yt ‘ . 24 ; Keay 

ip = — (302 ar 6a] ae +a?) = BusGely ’ jut | (y +a)e 4% 
(8a) la 7 2r\ 70 | 

;—= rf? — Q?\|| r—a 
/ (I = —s | — | | G + ven ey ji F allt 

Wenn man r—a setzt, so nimmt YW die Form an 

ip __ 4 Ug sin® + 
Ti ==). an 9 > 

aus der sich ohne weiteres erkennen lift, daB die erste der Gleichungen (1) 

fiir jedes von Null verschiedene ¢ erfiillt ist. Ebenso folgt aus 

; (r—a)? 

ie it 2 oul t in ! = 3vt bal a | - (rtaje 4 
Or ~— Dr? 

OT — uyasin® >| ( 

r2 + a? LSA 

die Beziehung ay a a 
Als a = UasIn* Vv, 

mithin ; 
(v9) p= = — Uo sin. 

Da ferner ftir ¢—0, a 1 _, 6 die Integrale J;, Jo, J, verschwinden, 
) vt Fa 

so nimmt die Stromfunktion die Gestalt an 

U,) a? sin? 
Pe >o= op 

Das ist aber die Stromfunktion fiir die entsprechende reibungslose 

Strémung!). Zu Beginn der Bewegung der Kugel bildet sich also 

eine Potentialstrébmung um die Kugel aus, die aber nicht 

existenzfahig ist und sofort durch eine Reibungsstrémung 

ersetzt wird. Fiir too werden die Integrale mit q.=0 

_ \z tee : ee ES 

und die Stromfunktion geht iiber in die Stokessche Form 

3r a 
rH By ee! Zain 29, Poo = tua a?sin® 7 ag oa 6 

1) Vgl. W. Miller, Mathem. Stromungslehre, S$. 57, 

Miiller, Theorie der ziihen Fliissigkeiten. Ilb 



166 Zihe Strémung in der Umgebung geradlinig bewegter fester Korper. 

die bereits frither geometrisch veranschaulicht worden ist. Um den 

Gesamtverlauf der Bewegung zu tibersehen, haben wir den von 0? unab- 

hingigen Faktor y(r,t) von Wfiir t=0, tyv=1, ty=4 und t=00, bei %=1, 

a=1 in Abhingigkeit vom Radius r dargestellt. Alle Kurven bis auf 

die zu t=0 gehérige, die als singulire Kurve der Schar z(r,¢) zu be- 

trachten ist, beginnen mit derselben Tangentensteigung 

0 2 3 7 5 G 7 8 9 

5 ee en ‘ FA : 
Abb. 56. Zur Konstruktion der Stromung um eine momentan aus der Ruhe 

in Bewegung versetzte Kugel. 

Wenn ¢ endlich und von Null verschieden ist, so erreicht x (r) fiir ein 

bestimmtes 7 cin Maximum, dem eine Nullstelle der Geschwindigkeit ent- 

spricht. Das Maximum und der Wert des zugehérigen Radius werden 

um so gréBer, je groBer t wird. Wir haben das absolute Stromfeld fiir 

den Fall ty=I1 gezeichnet, um den augenblicklichen Bewegungszustand 

in der Umgebung der Kugel zu verdeutlichen (Abb. 57). Man sieht, daB 

wie bei jeder beschleunigten Translation der Kugel, ein nieetornneen 

AE MANNY entsteht um den Nullkreis der Geschwindigkeit als Kern, 
der in dem Falle langsamer Bewegung in der zur Bewegungsrichtung senk- 
eon Ebene durch den Kugelmittelpunkt liegt. Dieser Zirkulations- 
ring erweitert sich sehr schnell mit der Zeit und wird im Grenzfall der 
Stokesschen Str6mung unendlich groB. Eine interessante, bisher nicht 
behandelte Frage ware die Feststellung der wirklichen Bewegungsbahnen 
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der einzelnen Fliissigkeitsteilchen, die auf die Integration der beiden — 
simultanen Differentialgleichungen 

dr 2cos% Le OCs (r): dd nf sin , 

dt pe KN; gg = — aX () 

hinauslauft. Hs scheint aussichtslos zu sein, diese Gleichungen ohne 
Benutzung graphischer Hilfsmittel zu lésen. 

Abb. 57. Stré6mung um eine plotzlich in Bewegung versetzte Kugel 

Gia? = 1 = 0): 

Neuerdings ist die Lésung des Problems der beschleunigten und 

plétzlich einsetzenden Bewegung einer Kugel durch J. Boussinesq?) 

und C. W. Oseen?) wesentlich vervollstindigt und auf den Fall verall- 

gemeinert worden, dais die Translationsgeschwindigkeit « beliebig mit 

™ der Zeit verainderlich ist. Auch fiir die Kraft, die von der Flissigkeit 

auf die Kugel ausgeiibt wird, laBt sich ein allgemeiner Ausdruck an- 

geben, iiber dessen Herleitung und Diskussion in dem Oseenschen Lehr- 

buch das Nahere nachgelesen werden mége. 

1) J. Boussinesq, Théorie de la chaleur, H, Paris 1903, 8. 224. 

2) C. W. Oseen, Hydrodynamik, S. 132—134; Arkiv for mat., astr. och fys. 

Bd. 6, 1904; Bd. 14, 1919. 
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ACHTES KAPITEL. 

Theorie des Widerstandes fiir groBe Reynoldssche 

Zahlen (nach Prandtl). 

§ 45. Reibungs- oder Grenzschicht. 

Die Betrachtungen der vorhergehenden Abschnitte haben keine 

Giiltigkeit fiir den Fall groBerer Reynoldsscher Zahlen oder kleiner 

Zahigkeit. Da aber gerade das Verhalten der Fliissigkeiten mit kleiner 

Reibung, also insbesondere von Luft und Wasser, in der Umgebung 

fester _Kérper in technischer Beziehung von hervorragender Bedeutung 

ist, so wird es nétig sein, diesem Falle eine eingehende, von physika- 

lischen Gesichtspunkten ausgehende Betrachtung zu widmen. 

Wenn wir die innere Reibung und das Haften der Fliissigkeit an den 

festen Wanden als die beiden grundlegenden Eigenschaften aussprechen 

diirfen, deren eigenartige Wechselwirkung den Bewegungswiderstand er- 

zeugt, so erscheint die Tatsache entscheidend, dai das Haften an dem 

Koérper unabhangig von der Reibung auch dann eintritt, wenn diese 

Reibung auBerordentlich klein ausfaillt. Diese Haftung bedingt aber in 

der unmittelbaren Nachbarschaft des Kérpers bei einer nicht langsamen 

Bewegung ein stirkeres Geschwindigkeitsgefalle normal zur Oberflache, 

und dieser Geschwindigkeitsgradient gibt wieder Veranlassung fiir das 

Zustandekommen von Scherkraften, die jedenfalls unvergleichlich gréRer 

sind als die in der freien Fliissigkeit auftretenden Tangentialspannungen. 

Diese ,,freien‘‘ Scherkrafte sind sogar so klein, daB die StroOmung auBer- 

halb einer gewissen, der Oberfliche aufliegenden Grenz- oder Rei- 

bungsschicht als Potentialstro6mung angesprochen werden kann. Nur 

in diesem Gebiet kénnen die Eulerschen bzw. Bernoullischen Glei- 

chungen als angenihert gitiltig vorausgesetzt werden, wahrend sie in 

der Grenzschicht nicht mehr zutreffen und durch die Stokes-Navier- 

schen Gleichungen ersetzt werden miissen. Je kleiner die Reibung ist, 
desto schirfer tritt der Unterschied zwischen der Potentialbewegung 
und der Grenzschichtbewegung, also insbesondere zwischen den Reibungs- 
spannungen in beiden Gebieten, zutage. Da aber gerade, wie sich zeigen 
wird, in diesem Spannungsgefialle der Ursprung zu suchen ist fiir die 
Umgestaltung des Strombildes, namentlich auf der hinteren Seite des 
umstromten Korpers, so ist auch die Entstehung der daraus ableitbaren 
Krafte, die weder die Theorie der reibungslosen noch der reibungsstarken 
Fliissigkeit zu erkliren vermag, insbesondere des Formwiderstandes und 
der Auftriebskraft wesentlich durch die Kleinheit der Reibung bedingt. 



§ 45. Reibungs- oder Grenzschicht. 169 

Die genauen Vorginge wollen wir zunachst in qualitativer Beziehung 
an Hand der beigegebenen Figuren verfolgen, die sich auf die Umstro- 
mung eines zylindrischen konvexen und stetig gekriimmten Profiles be- 
ziehen. O sei der Staupunkt der Strémung und M der Punkt, in dem 
die Geschwindigkeit der im Beginn der Bewegung sich ausbildenden 
relativen Potentialstré6mung den gréBten Betrag langs des Korpers er- 

y < 

0 

Abb. 58. Ablosung der Strémung um eine gekriimmte Oberfliche. 

reicht ; ferner sei A der noch zu bestimmende Punkt, in dem die Strémung 

sich von der Kontur ablést (Abb. 58). Die kurze Zeit nach dem Beginn 

der Bewegung des Kérpers sich ausbildende relative Geschwindigkeits- 

verteilung kann so dargestellt werden, daB lings einer Normalen 

innerhalb der Grenzschicht G von der kleinen, mit der Geschwindig- 

keit verinderlichen Dicke 6 die Stromgeschwindigkeit vom Werte 

Abb. 59. Geschwindigkeitsverteilung in der Grenzschicht 

und Wirbelentwicklung. 

Null an der Oberfliche bis zu einem Werte V an der Grenze 

gg ansteigt, die gleichzeitig das Gebiet P der Potentialstr6mung ab- 

schlieBt. Der wesentliche, weiterhin noch naher zu begriindende Ge- 

danke der Grenzschichttheorie besteht nun in der Annahme, dafs der 

Druckgradient normal zur Grenzschicht vernachlassigbar klein ist, oder 

daB dieselbe Druckverteilung, wie sie an der Grenze gg der Potential- 

bewegung herrscht, auch im Gebiete G bestehen bleibt. Beim Anstieg 

der Geschwindigkeit auf der Strecke OM fallt der Druck vom Staudruck 

in O bis zum Kleinstwert ab, so da die resultierende Druckwirkung 
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in die Richtung der Strémung fallt. Beim Geschwindigkeitsabfall vom 

Punkte M an dagegen mu die Strémung in das Gebiet hoheren Druckes 

eindringen. Da sie aber infolge der Bremsung innerhalb der Grenzschicht 

durch die Schubkrafte nicht mehr die Geschwindigkeit besitzt, die ge- 

mi® der Bernoullischen Gleichung erforderlich wire, um den erhéhten 

Druck zu iiberwinden, so wird eine resultierende, der Stromrichtung ent- 

gegengesetzte Druckwirkung entstehen, die von einer bestimmten Stelle A 

an die Strémung im unteren Teil der Grenzschicht zur Umkehr und daher 

die Grenzschicht zur Ablésung von der Koérperoberflaiche zwingt (Abb. 59). 

Diese Ablésung beginnt an der Stelle, wo der Geschwindigkeitsgradient 

Abb. 60. Wirbelentwicklung aus der Grenzschicht. Anfangsstadium. 

(Nach Tietjens.) 

in Richtung der Profilnormalen an der Oberfliche den Wert Null erreicht. 

Der laminare Teil der Grenzschicht kann zufolee des Stokesschen 

Integralsatzes, den wir auf einen zwischen zwei benachbarten Ober- 

flachennormalen liegenden Teil der Grenzschicht anwenden, als ein 
1 ta » » aya! \ = 1 » xT" ¢ = j 4 10 wirbelbehaftetes Gebiet oder als eine Wirbelschicht angesehen werden. 

Durch die Riickstrémung und die Ablésung bei A tritt nun die 
Wirbelschicht in die Fliissigkeit und bildet hier, indem sie sich spiralig 
aufrollt, sichtbare und grdBere zusammengesetzte, individualisierte 
Wirbelgebilde, die in die freie Fliissigkeit treten und das aiuRere Strom- 
feld aa daa pssst re ate cei EO lle ‘ und damit nattirlich auch die Druckverteilung lings der Hinter- 
seite, also den Widerstand des Kérpers wesentlich veriindern (Abb. 60) 
Wahrend also die Umsetzung von Druck in Geschwindigkeit verhiltnis- 
maiBig verlustfrei (im Sinne der Eulerschen bzw. Bernoullischen 
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Gleichung) vor sich geht, tritt der umgekehrte Vorgang nur unvollstandig 
auf, indem ein Teil der Geschwindigkeitsenergie auf dem Wege der Wirbel- 
bildung sich in Warmeenergie umsetzt, also sicherlich verloren geht. 
Denn der in der Umgebung jedes Wirbelkerns zuniichst entstehende starke 

Geschwindigkeitsgradient bedingt eine entsprechend groBe Reibungskraft, 

durch die die Wirbelenergie allmahlich aufgezehrt wird (vgl. § 31). 

Was die weitere Umbildung des Stromfeldes angeht, so ergibt sich 

etwa folgender Verlauf: Indem die Fliissigkeit nach jeder Ablosung eines 

Wirbels von der Kérperoberflache die urspriingliche Verteilung der Feld- 

groBen (Geschwindigkeit und Druck) langs der Kontur wieder herzustellen 

strebt, wird gleichzeitig eine neue Anhiufung und Abwirbelung von 

Abb. 61. Unsymmetrische (wechselseitige) Ablosung der Kielwasserwirbel. 

Fortgeschrittenes Stadium. (Nach Tietjens.) 

Grenzschichtmaterial eingeleitet, die jener Tendenz entgegenwirkt, und 

man sieht, dafi im Laufe der gleichmaBigen Bewegung des Korpers ein 

instationares, rhythmisches Wirbelspiel sich dem Hauptstrom  tiber- 

lagert. Dabei zeigt sich, da insbesondere im ebenen Falle die Ab- 

lésung eines Wirbels die Entstehung eines entgegengesetzt drehenden 

Wirbels auf der anderen Seite des Hindernisses begiinstigt, was schlief- 

lich zur Folge hat, daB die Wirbel abwechselnd von beiden Seiten ab- 

gehen (Abb. 61) und so hinter dem bewegten Korper einen wirbelerfiillten 

Kielwasserstrom (oder Stromschatten) erzeugen, der sich in dem Mafe 

immer wieder. neu ersetzt, wie die abschwimmenden Wirbel durch die 

Reibung aufgezehrt werden (Abb. 62). Die individualisierten, im wesent- 

lichen zweireihigen Wirbelgebilde hinter einem Kérper mit endlicher 

Querflache werden dabei einer Anordnung zustreben, die die gréBte 
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Stabilitat gewihrleistet. Wie v. Karmant) nachgewiesen hat, erfiillen 

zwei gegensinnige, unendlich lange geradlinige WirbelstraBen nur dann 

die Bedingung der Stabilitat, wenn die Wirbel ,,auf Liicke“ stehen, und 

das Verhaltnis des Abstandes beider Reihen zum Abstand zweier aufein- 

anderfolgender Wirbel einer Reihe einen ganz bestimmten Wert, namlich 

0,28, besitzt. Tatsiichlich lehrt auch die Beobachtung, dal} die wirkliche 

Anordnung etwa diesem Verhaltnis entspricht. Bei der achsensymmetri- 

schen Strémung um einen Rotationskérper, die uns spaiter noch naher 
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Abb. 62. Schema der Absolutstr6mung um einen bewegten Kreiszylinder 

mit ausgebildetem Kielwasser. (Nach Ahlborn.) 

beschaftigen wird, wird der Kielwasserstrom im wesentlichen sich aus 

kreisformigen Wirbelringen bzw. Schraubenwirbeln zusammensetzen, die 

in einer dem Korper aufliegenden zylindrischen Wirbelschicht ihren Ur- 

sprung haben. Auch fiir Wirbelsysteme dieser Art liBt sich eine der 

Karmanschen analoge Stabilititsbetrachtung durchfiihren2), 

Die Kielwasserwirbel bestimmen im wesentlichen den gegen die Be- 
wegung gerichteten Formwiderstand des Kérpers, der im allgemeinen 
gegenitber dem Reibungswiderstand um so mehr ins Gewicht fallt, je 
kleiner die Zaihigkeit ist. Ferner entsteht bei jeder zur Bewegungs- 

) Th. v. Karman — H. Rubach, Phys. Z. 13 (1912), S. 49—59. 
*) H. Levy u. A. G. Forsdyke, Proc. Roy. Soc. London (A) 1 S , , ; . Roy. é 14, 8. 594— ; 

120, 8. 670—690. i ee 
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richtung auftretenden Unsymmetrie des Kérpers eine Seitenkraft, die 
in besonderen Fallen den Charakter einer Auftriebskraft annimmt. 
Fiir die Berechnung dieser Krifte werden wir spiter einige Methoden 
angeben. 

§ 46. Differentialgleichung und Impulsgleichung 
fiir die Grenzschicht. 

1. Um die fiir die Grenzschicht giiltige Differentialgleichung abzuleiten, 

setzen wir ebene Verhaltnisse sowie eine zylindrische, stetig gekriimmte 

Kontur voraus und fiihren die Bogenlange bzw. die in die Flissigkeit 

weisende Normale als #- bzw. y-Richtungen ein. Wenn man auf die 

Kriimmung oder die Richtungsiinderung der Tangente und Normalen 

Riicksicht nimmt, so treten zunichst in den Bewegungsgleichungen zu- 

satzliche, vom Kriimmungsradius und dessen tangentiellem Gradienten 

abhangige Glieder auf, z. B. die Zentripetalbeschleunigung a , die wir 

vernachlassigen kénnen, wenn wir die Kriimmung im Verhiltnis zur 

Grenzschichtdicke als klein ansehen bzw. uns auf ein kleines Gebiet in 

der Nahe der Ablosungsstelle beschranken. Die Form der Gleichung ist 

dann dieselbe, als ob die Koordinaten w und y Cartesische Koordinaten 

waren. Wenn wir bei Kinftthrung dimensionsloser GréBen fiir den kleinen 

Wert der Grenzschichtdicke (06 = yma.) die GroBenordnung ¢ annehmen, 

ferner voraussetzen, dali die im wesentlichen durch die Vorginge auBer- 

halb der Grenzschicht bestimmten Werte 

Oi, Wi, CPO, Oe 

Ot’ Ox’ Ox? Ox 

normale, mit 1 vergleichbare GréBenordnungen besitzen, so erhalten wir 

Vx 5 

Aa r . Sear * : a Cv . 
aus der Kontinuitatsgleichung die Abschatzung O i col und daher in 

der Nahe der Oberflache v,~w<«, also, da « nicht klein sein soll, 

Orv 
ee Me, 5 %¥o<«. Dagegen wird wegen des raschen Anstieges von v, 

Ho ed - 
: ; Vy GPa, ] 
innerhalb der Grenzschicht ay =i ay? er 

Schreiben wir diese Vergleichswerte unter die einzelnen Glieder unserer 

Gleichungen, so erhalten wir folgendes Schema: 

Ove, OU, , , Ody _ _ 1 Op , 1 (div, , Oe, 
Ge Oe | Yay 6 ox x (aat + ale 

1 1 
il iat é- Z it il 2 

(1) 0 1 oO? o2 

vy Ovy Ov _ _ 1 op Vy “4) 
Gee Ora ae eects Me 

il 
é 1-é é-1 é 2 
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Da die erste Gleichung zeigt, daB der Einflu8 der Reibung von merk- 

licher GréBe wird, wenn = ~ e2 ist, so sieht man, daB die Dicke 6 

‘ 1 ; y cee 
der Grenzschicht proportional mit Vx zu setzen ist. Vernachlassigen 

wir weiter in der Gleichung (1) alle Glieder von der GréBenordnung ¢ 

oder ¢2, so ergibt sich aus der zweiten Gleichung, daB das Druck- 

Op 
gefalle se von der GroBenordnung « ist, also gegentiber ie vernach- 

lassigt werden kann. Wir finden also die wesentliche Annahme der 

Prandtlschen Theorie bestatigt, da der Druckgradient in der zur 

Oberflache normalen Richtung gegentiber dem tangentiellen Gradienten 

gleich Null gesetzt werden kann, oder daB die Druckverteilung im 

Potentialgebiet als ein der Grenzschicht eingepragtes Kraftfeld aufzu- 

fassen ist. Bei Vernachlassigung des zweiten Gliedes rechts geht aber die 

erste Gleichung tiber in 

OV» OV» lo 1 Ov, 
(2) i aes : 

Wenn V die Stromgeschwindigkeit an der Grenze gegen das Potential- 

gebiet ist, so folet aus fe =0 die gewohnliche Bernoullische Beziehung 

zwischen p und V 
6V OV 1 ap 

8) a + On — 9 an’ 
Damit geht dann bei stationiirem )’ Gleichung (2) iiber in die zuerst 

von Prandtl?) aufgestellte Differentialgleichung der Grenzschicht 

Ov, Ov, OV, ,OV Le? 

bt te + Gy —Y oa tH aye? 
(2a) 

0% Ody 
ay =0. 

2. Zu demselben Ergebnis gelangt man, wenn man mit v. Karman?) 
und Pohlhausen’) von der bereits bekannten Differentialgleichung der 
Stromfunktion ausgeht, namlich 

O04 OF OFF OFOAYL 

ot Oy Ox Ox Oy 
(4) =yAAP, 

') L. Prandtl, Verhandlungen des III. Intern. Math.-Kongr. 1904 (Heidel- 
berg), Leipzig 1905, S. 484, abgedruckt in: Vier Abhandlungen zur Hydrodynamik 
u. Aerodynamik, Gottingen 1927. 

*) Th. v. Karman, Uber laminare und turbulente Reibung. Z. f. a. Math. 
u. Mech., Bd. 1, (1921), 8. 233—252. 

’) K. Pohlhausen, Zur Bah eraneewe leg Integration der Differentialgleichung 
der laminaren Grenzschicht. Ebenda, 8. 252—268. 



§ 46. Differentialgleichung und Impulsgleichung fiir die Grenzschicht. 175 

worin wir wieder unter Voraussetzung dimensionsloser GréBen » durch: ei 

ersetzen wollen. 

Um die Grenzbedingungen fiir groBes ® zu erfiillen, setzen wir mit 

y=y-R* unter der Annahme stationirer Strémung 

P= Po(a, y) + R* Fi (z, 7), 

wo die Koeffizienten x und 4 noch zu bestimmen sind. Dabei soll sich ¥% 

auf die Potentiallosung beziehen, die an der Grenze der Reibungsschicht 

giltig wird. Dann ist bei ane R 

2 of O24 
4E,=0, 72 = + RS f oo R24 P + 

a r, a 1" ai ONE: zu re > 9224 42 Lan R447 1. AAP, =—> +2 a, Dx R Ort 

Setzen wir diese Werte in die Differentialgleichung fiir Y ein, so wird 

OF, 8, OE Ge Oe OG, Goa OL 02S, x+22 PS ME te 2 ie = oe 3A eowile 1 1 

(6) apenont a owt oe OnE © Gh GEC 
—= Rx + 44-1 pF 

nt 

Wenn beide Seiten mit wachsender Reynoldsscher Zahl gleichmaBig 

zunehmen sollen, so erhalten wir als Bedingungsgleichung fiir x und A 

At QA=2x44+3A=41+ x— 1, 

die die Werte liefert 

Mit der Taylor-Entwicklung 

. a", P(x, =P dyao+(G et)" yt Ses oe 

geht die ae tae (5) tber in 

( ae oh) ee OY, eee 
h oie a “On OxOn? Ox On?) On! (5a) 

oder 

CLA al EL a ACS a CE 
ob) (h sie ae Ox On? ae Ane a 013 Ox! 

Nach Einfiihrung von G=Y¥,+/:7 hat man also 

dG 8G AEGHEG_ AG 
| dn Oxdy? dx O7® Or! 

(6) | ] P= W(x, y) + \R (G71), 

wobei als Grenzbedingungen fiir G zu beachten sind 

G i 
G=), 7-0 fir »=0, ce mh fiir n—>0o. 
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Man sieht dann, daB in der Nahe der Wand, wo die Fliissigkeit haftet, 

= wird, wahrend im Unendlichen G sich wie fin verhalt, also 

Ln He Potentialfunktion Y, tibergeht. 

Wenn wir nunmehr die gewonnene Gleichung (6) nach 7 integrieren und 

Oe Sea Vz 5 oe — Vy 
Oy ~ On Ox 

setzen, so erhalten wir wieder die Differentialgleichung der Grenzschicht. 

3. Grenzschicht als Wirbelschicht. Wie bereits hervorgehoben, 

kénnen wir die Grenzschicht auch als eine Wirbelschicht auffassen. 

r 

Da die Ableitung a gegentiber - vernachlissigt werden kann wie 

= gegen 1, so haben wir fiir die Wirbelstarke den Ausdruck 

ie 1 OV, 

T 2 ey 

Die Differentialgleichung ftir w lautet daher 

Ow ew 02 w 

Ot dy Oy? (7) 
4 Cw 

dan, = ) Vx aa + Vy 

Alle in dieser Gleichung enthaltenen Ausdriicke haben die GréBen- 
rk as ae 

ordnung = ee ah der Wirbelstarke. Man sieht also, da die 
* 

Wirbelbildung an der Oberfliche des Kérpers um so mehr ins Gewicht 

fallt, je kleiner die Zahigkeit oder je gréBer die Reynoldssche Zahl 

wird, ein Resultat, das mit der Erfahrung durchaus itibereinstimmt. 

Die Gleichung (7) werden wir spiter fiir den besonderen Fall des Kreis- 

zylinders integrieren. 

4. Die Impulsgleichung der Grenzschicht. Wenn man die 
Differentialgleichung der Grenzschicht nach y von 0 bis 6 integriert w > 

so erhalt man eine Integralbeziehung, die auch in direkter Weise aus 
dem allgemeinen Impulssatz (vgl. § 7) gewonnen werden kann. Dieser 

i : ; 
Satz besagt, da die Gesamtheit der auf das Element der Schicht 

vice a CPs Q aA ¢ a nm ~ . a wirkenden Krafte (Summe aus Druck- und Reibungskraften an der Wand) 
der substantiellen Impulsiinderung in der Zeiteinheit gleichzusetzen ist. 
Diese Impulsinderung setzt sich zusammen aus der lokalen Anderung 
des in dem nt 5 3 dem Element enthaltenen Tmpulses, also aus 

J Dap 
Ji = oda = 0 Ot vxdy > 

0 
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und aus dem Impulstransport durch die Grenzflichen. Der Uber- 
schuB J, des in der Zeiteinheit durch die Flache F, austretenden Im- 

pulses gegeniiber dem durch 

die Flache fF, eintretenden 

Impuls ist 

Y 

Jo= ede © [ ody. 
0 

iemecurehi die  (Seitentlaghe Abb. 63. Zur Ableitung der Impulsgleichung 

fiir die Grenzschicht. 
mit der Spurkurve 0(x)=y 

eintretende Fliissigkeitsmenge ist gleich der Differenz der durch die 

Flachen F, und F, aus- bzw. einstrémenden Mengen, also gleich 

on 
odx a | vx dy 5 S 

0 

den zugehérigen eintretenden Impuls —J,, der von J, abzuziehen ist, 

findet man daraus durch Multiplikation mit der Geschwindigkeit V der 

Potentialstrémung. Wir haben daher im ganzen folgende Impulsgleichung: 

Ji tJe+J3=Pi—P2—R 

oder 
0 0) n) 

Dict bee ine nega Yous 

0 0 0 

die iibrigens auch fiir die turbulente Grenzschicht Giiltigkeit behalt, 

wenn man unter v, und p die zeitlichen Mittelwerte von Geschwindig- 

keit und Druck versteht. Setzt man 

ve =V—qley) 
in die Impulsgleichung ein, so ergibt sich bei Annahme stationarer Stro- 

mung, fiir q die Differentialgleichung 
0 ) n) 

dv i dai de eee. Og? . 
(8a) 2 | toy —V i, | cay de | 4 dy = —9(55) 9) 

0 0 0 

q¢ hat ferner die Randbedingungen zu erfiillen: v,=0, q(x, y)=V fir y=0, 

q(x, y)=0 fir y=6. Fiir den Rand y=0 geht die Grenzschichtgleichung 

wegen v,=0 tiber in 
dV | ((V-q) 2 
ae + } | Oy? jae 6 0 . 

In den folgenden Abschnitten werden wir einige spezielle’ Lésungen 

dieser Gleichungen angeben. 

Miiller, Theorie der ziihen Fliissigkeiten. 12 

V 
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$47. Zuriickfiihrung der Grenzschichtgleichung auf die 

Wirmeleitungsgleichung. 

Die mathematisch einwandfreieste und zugleich allgemeinste Begriin- 

dung der Grenzschichtgleichung hat v. Mises auf der Kissinger Tagung?) 

gegeben. Die Allgemeinheit und Tragweite dieser Beziehung spricht 

sich darin aus, daB v. Mises zunachst nicht von den Randverhaltnissen, 

sondern von einer ganz beliebigen Stromlinie S im Innern der Fliissig- 

keit ausgeht und das Bestehen der Grenzschicht als nachtragliches Er- 

gebnis ableitet. In der Umgebung von S denken wir uns ein krumm- 

liniges Koordinatensystem festgelegt, dessen Koordinatenlinien aus 

Parallelkurven und Normalen von S bestehen. Bezeichnen wir die 

Koordinaten eines Punktes durch s, n, die entsprechenden Geschwindig- 

keitskomponenten durch »v,, v,, und fiihren wir in den dimensionslos 

geschriebenen Stokes-Navierschen Gleichungen die Transformation ein 

a=s,y=nyR, vr = vs, Vy = Vn) R, 

so ist damit eine doppelte Verzerrung des Stromfeldes in der Umgebung 

von S ausgedriickt; einerseits nimlich eine Abwicklung des Bogens s 

auf die geradlinige x-Achse und andrerseits eine Querdehnung auf das 

| R-fache. Beim Ubergang zu R-—> oo ergibt sich dann 

OV, Ov, 2 ile Ov, Oo (1) We St vy St = = — OP Oe oP 
Ox oy Ore Cu? 0; ; 

ff p= 0. 

Dieses Gleichungssystem ist im wesentlichen identisch mit dem 

Prandtlschen System. Fiihrt man nun 2 und die Stromfunktion Y 

als unabhangige Veriinderliche ein und wahlt die der Stromungsenergie 

proportionale Grobe 
2 2 2 2 

Vxn Vy p Vee Pp 
= — 2? ~ —— — =) 2 == 

2 ce ( 2 ze R ns oe ~ | 2 mu 0 

als Unbekannte, so ergibt sich aus 

Ov,(xy) _ Ov,(x ¥) zi dv, (@ F) 08, Ov, (a #) 

Ow Ox Yaron 2t Oye Ore 
fiir z die bemerkenswerte Differentialgleichung 

Oz Oz atten ce a 2 gL Ly aS pe Wa =e , 2 (2) Ag hoops k=ve=| op Pele , 

die ohne weiteres als Wiarmeleitungsgleichung eines unendlich langen 
1 De ray Coat, , Stabes zu deuten ist, wenn x als Zeit, Y als Abszisse des Stabes und 

z als Temperatur aufgefaBkt werden. 

Vel. Za. MOMS Bae 7, 1927 8495231: 
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v. Mises leitet nun auf Grund dieser Analogie einige interessante 
Folgerungen aus der Gleichung ab, insbesondere die Bedingungen, unter 
denen die Erscheinung der Grenzschicht am festen Rand auftritt. 

Eine Grenzschicht ganz allgemein entsteht immer dann, wenn der 
gegebene Druckverlauf nicht mit dem Geschwindigkeitsverlauf lings der 

Grundlinie tibereinstimmt, d.h. z fiir Y%=0 nicht konstant ist; ferner un- 

abhangig vom Druckverlauf, wenn die Geschwindigkeitsverteilung im Ein- 

trittsquerschnitt schon das starke Gefalle aufweist. In diesem Falle ver- 

liert sich die Grenzschicht allmahlich, oder ihre Breite wird mit wachsen- 

dem x unendlich gro8. Daraus wiirde sich ergeben, daB eine Rand- 

schicht nur dann auftritt, wenn der Druck lings des Randes variabel ist, 

wahrend sie bei konstantem Druck, wie etwa im Falle der eingetauchten 

Platte, durch die Eintrittsbedingungen erzwungen werden kann, um sich 

dann allmahlich in der normalen Strémung zu verlieren. Eine ,,innere 

Grenzschicht*‘ dagegen kommt dann vor, wenn eine fortschreitende Stré- 

mung an ein Kielwassergebiet grenzt, oder aber beim Auslauf hinter 

einem Hindernis. 

Auf die weiteren Einzelheiten, die v. Mises besprochen hat, konnen 

wir in diesem Zusammenhang nicht eingehen. Da auch die in Aus- 

sicht gestellte Durchrechnung einiger wichtiger Sonderfalle, z. B. des 

Kreiszylinders, noch nicht erschienen ist, so werden wir in den folgenden 

Abschnitten hauptsichlich auf die Arbeiten der PrandtIschen Schule 

Bezug nehmen. 

§ 48. Widerstand einer in die Strémungsrichtung gestellten 

ebenen Platte (bei laminarer Grenzschicht). 

1. Die Blasiussche Rechnung!). Die Grenzschichtgleichung kann 

ohne weiteres angewendet werden auf den Fall der unendlich langen 

ebenen Platte, die sich in ihrer Ebene normal zu ihrer Langsausdehnung 

gleichformig durch die Flissigkeit bewegt. Da wir hier V=Up setzen 

kénnen, so gehen die Gleichungen der stationaren Grenzschicht tiber in 

OV, _ Oy _ Oe, Ov, Ovy 
(1) Ua ess WOT aga Oy?” Ox pies we 

Fiihren wir mit Blasius durch die Substitutionen 

a 25 2, P=ypyUox-f 

1) H. Blasius, Grenzschichten in Fliissigkeiten mit kleiner Reibung, Z.f. Math. 

u. Physik, Bd. 56, 1908, S. 1—37, insbes. 8. 4f. 

12* 
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die dimensionslosen GréBen € und é ein, so ergibt sich, wenn man die 

Ableitungen von € nach & durch Striche bezeichnet, 

OF OF ., OF Ul! 
ey CG aU ane 

OV 1 ye U pis.) ert OS ee =- ft -wtet 5 =5 ee —9- me eon 2 

Wenn man diese Werte in die Gleichung (1) einsetzt, so erhalt man 

durch eine einfache Rechnung die Differentialgleichung 

(2) co 4 Li 0 
mit den Grenzbedingungen 

Vy —0z = 0, (let '() fiir E=(, y= (US 

Vz = Uo, (Po) fir 00, y>oo. 

Als Lésung von (2) ergibt sich nach Blasius die konvergente Reihe 

«oO 

— Se W\7 Cyan rt c3n +2 
(3) > — ( ) (3n cE 2)! S ? 

deren Koeffizienten durch die Rekursionsformel zu bestimmen sind 

wi 3 
n—t Zo ae n 4 f 37 iCn—1—7 

Die noch unbestimmte Konstante a wird auf Grund der Bedingung fest- 

gelegt, daB ¢’ im Unendlichen den Wert 2 annehmen soll. Setzt man 

i i 

mal, La aie 
so wird 

00 
Z= >= 1" = xine 

yas (3n + 2)! ; 
n=0 

Man findet fiir die Richtungskonstante der Asymptote dieser Kurve 
d 8 : 
qx: Daraus ergibt sich dann aus der Beziehung 

Zia 
——— il 1 3 

Cp. TE 

der Wert 
6 

= Oe ee 26 

Das erste Glied der Entwicklung von ¢ lautet dann 

on OV, Up +, OF | Oa ae ae ll 

4) POG a Cary. am Le ee 
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Fiir eine ebene Platte von der Breite 6 und der Lange 1 findet man 
daher den Widerstand 

1 

(5) W = 20 | tay da =1,326 +b JoulU? 
0 

und mit 

W = cw: F. 0U? 
den Widerstandsbeiwert 

(a) Peso Gee 
ie 

Der Widerstand ist also der Breite direkt und der Wurzel aus der 

Lange, ferner der 2-Potenz der Geschwindigkeit proportional. Der Bei- 

wert nimmt ab mit wachsender Reynoldsscher Zahl. Eine Ablésung 

der Grenzschicht findet in diesem Falle natiirlich nicht statt. 

2. Vergleich mit einer Formel von Rayleigh. Wir haben friiher 

(§ 29) den Fall betrachtet, da eine unendlich ausgedehnte Ebene aus 

der Ruhe plotzlich mit einer Geschwindigkeit U» sich in sich selbst in 

Richtung der w-Achse bewegt. Die Geschwindigkeit v in einem Punkt 

im Abstand y von der Ebene war dargestellt durch 

q ¥ 

v= Voll — [e-* aq); =i 
VTE 

0 

Daraus ergibt sich als Widerstand pro Flacheneinheit 

Setzen wir nun fiir ¢ diejenige Zeitdauer ein, die der Punkt mit der 

Koordinate x braucht, um die Lage «= 0 zu erreichen, wahlen also 

pres 0) 
letigey 

und integrieren dann von 0 bis /, so kommt mit b=1 

l = ne 6 Ls a eee 
(6) W= [Uo eee = = VuolO = 113) nol. 

c 7U 
0 

ein Ausdruck, den wir mit einer gewissen Berechtigung als Naherung 

fiir den Widerstand bei der gleichmiBigen Bewegung in Anspruch 

nehmen kénnen. Das Gesetz stimmt wenigstens qualitativ mit dem 

Blasiusschen Gesetz iiberein. 

3. Die Pohlhausensche Naherung. Um die Grenzschichtgleichung 

fiir die Platte naherungsweise aufzuldsen, fiihrt Pohlhausen in der be- 
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a 

reits zitierten Arbeit einen parabolischen Geschwindigkeitsabfall inner- 

halb der Grenzschicht durch den Ansatz 

(7) v= Uo —q=ala)y + b(x)y? + c(x)y? + d(a)y* 

ein. Aus den Grenzbedingungen 

Ov ih hy az 
agen ae ae pO fir y=0, 

Ov ov 2s 
C= U5 a7 op ee 

erhalten wir dann die Bestimmungsgleichungen 

a+2b0+3c02?+4d0°=0, ad+b02+cd?+dd*=Uo, b=0, 

2b+ 6cd+12d0? = 0, 

aus denen die Werte hervorgehen 

2U, 
a == — pol =O, ——— d=; 

daher wird 

(8) 

7 2 3 
Abb. 64. Geschwindigkeitsverteilung bei der Strémung 

lings einer ebenen Platte. 

Fir die in der Impulsgleichung (§ 46, 8) vorkommenden Ausdriicke 
erhalten wir ferner 

0 J 
? a 3 . ry 4 93 Pa a) fn) 9 

[ady = {5 00d, [ady = j5,U20; la = __ 25, 

0 0 YI 

mithin fiir die Dicke der Grenzschicht den Wert 

(9) Or 5,83)/27", 
0 
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der von der Vorderkante bis zur Hinterkante mit der Wurzel aus dem 
Abstand von dem vorderen Punkt #—0 wiichst. Fiir die Reibungs- 
spannung ergibt sich dann 

BP CU.ce 1/uoUs. 
CE Ey A aS a 

Der entsprechende Widerstandsbeiwert 

(10) Cw = —— z 

ist um einige Prozent gréBer als der unter (5a) angegebene Wert. 

Das der Blasiusschen Lésung entsprechende Geschwindigkeitsprofil 

(vgl. Abb. 64), das iibrigens spiter von Bairstow") neu _berechnet 

wurde, ebenso die entsprechenden Widerstandswerte befinden sich fiir 
Uy! Rates 5 Pee, 5 

i= ——<3.10* in guter Ubereinstimmung mit den Messungen von 

Burgers’), van der Hegge Zijnen und Hansen’). Fur R >3.10° 

nimmt die Grenzschichtbewegung einen instabilen Charakter an. 

§ 49. Der Widerstand der ebenen Platte bei turbulenter 

Grenzschicht. 

Um die Berechnung des Widerstandes fiir den Fall durchzufihren, 

daB in der Grenzschicht der turbulente Zustand herrscht, gehen wir auf 

das von Blasius und v. Karm4n ermittelte Gesetz fiir die turbulente 

Strémung in Rohren zuriick, das fiir 2.10?<R<2.10° Giiltigkeit hat. 

Die Geschwindigkeitsverteilung ist in diesem Bereich der Kennzahl 

darstellbar in der Form 4 i 

() v= 8,7 (2) (2) 
Wo T> die tangentiale Wandspannung und 7 den Abstand von der Wand 

bedeuten. Ferner hat man 

| 

(2) To = 0,0225 ov? (“) 

In unserem Falle setzen wir, wenn U, die Geschwindigkeit der un- 

gestorten Strémung und 6 die Grenzschichtdicke bezeichnen, 

i 

(3) | v= U0(5), 

1) L. Bairstow, Journ. of the R. Aeron. Soc. 19, 3, 1925. 

2) J. M. Burgers, Proc. of the I. Intern. Congr. for Appl. Mech. Delft 1924, 

Smllas 
8) M. Hansen, Z. A. M. M. 8, 185, 1928. 
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ale also ; 

(4) T) = 0,0225 0 UG Gas 

Fiihren wir diese Kraft in die oben aufgestellte Impulsgleichung der 

Grenzschicht ein, so erhalten wir 

f) é a 
d f a Jets (5) a | er ay — Uo ze | evdy = 000225 ¢ U5 (g,4) Ff 0 

ie eal Pall | | re +— Kempf t 1 | i ae a4 
| Wieselsberger (rauh) 

19" a ye | | 

5-10" = 
4107 Neer ane 
3-109 eet | 

-3 2-10 | 

Abb. 65. Reibungswiderstand einer in Stromrichtung gestellten Platte. 

Mit Hilfe des Ansatzes (3) entsteht nach Ausfithrung der Integra- 

tionen die Differentialgleichung 
1 

Tad fy \4 oe a) ODF 
(6) 12 da 0,0225 a 5) : 
die die Lésung besitzt 

90 4 4 nk A 
ences DORE a eee NS (7) 0 ( ) (0,0225) Gel a: d= 0,300 (7) 

Fir den Plattenwiderstand ergibt sich dann wie im vorigen Abschnitt 
der Prandtl-Karmansche Wert 

1 
5 r 7 9% rs) 

(8) We U50 = 0,072 eUlbR 

mit dem entsprechenden Beiwert 
1 

(Sa) Coe OTEK. °. 

Der Widerstand ist nach diesem Gesetz der 9/5-Potenz der Ge- 
shwindjokei ar 4./5-P P Shi , srti schwindigkeit Uy und der 4/5-Potenz der Liinge der Platte proportional. 

Diese Werte stimmen, wie dag beifolgende, im logarithmischen Mafstabe 
gezeichnete Diagramm (Abb. 65) ergibt, mit den Versuchsergebnissen 
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von Gibbons, Gebers Wieselsberger u. a. verhiltnismifig gut iiber- 
ein. Nur bei hohen Kennzahlen treten erhebliche Abweichungen auf?). 

Durch Gleichsetzung des laminaren und turbulenten Widerstandes 
erhalt man 1 1 

0,0720U77R *=1,3270U2IR * 
und daraus die theoretische Ubergangszahl 

10 

(9) R;, = (18,4) ? ~ 16,102, 

die unterhalb des versuchsmaBig gefundenen Wertes (R ~ 3,10°) liegt. 

§ 50. Lésung von Blasius fiir den symmetrischen Fall. 

Als weiteres Beispiel besprechen wir den auch von Blasius?) behan- 

delten Fall eines symmetrischen Profils, das parallel der Symmetrieebene 

angestrémt wird bzw. in der Flissigkeit sich gleichférmig bewegt. Wenn 

wir den Anfangspunkt der x-Koordinate in den Staupunkt legen, kénnen 

wir fiir die Potential- und Reibungsstr6mung einen ersten Ansatz in 

der Form machen: 

(1) V=72— sa, P= vive — wi y)e?, 

und erhalten dann nach Einsetzen in die Grenzschichtgleichung, wenn 

wir die Glieder von hoéherer als der dritten Potenz in x vernachlassigen, 

und die Ableitungen nach y mit Strichen bezeichnen 

et Vet AU a By are PE 
Fiihren wir jetzt dimensionslose Gréfen ein durch die Substitutionen 

- is r - , : /2r 
(ae is cS ; Ps = ity 

a =a) p> 4 y| i | py RS AE ge 

so wird 

(§ — teR4 ip tke ane foe ee (la) es y= Ca ee |, Cote) 
Ferner erhalten wir mit 

ee UG 2dy ey, a Bale pe eee ae 

S dn r dy ph? =i ay S A a 

: 4 2 4 _ 2,/2y ras aa gare ae le liye ID ror é : a 3 ae rer Oe eek sat Ve alt 

fiir die Geschwindigkeit 
0 a AL 

(3) ete ye ae (O75 — £7 5°) 

1) Vgl. etwa Handbuch der Physik (Geiger-Scheel), Bd. VII, Berlin 1927, 

Salas 

2) H. Blasius, Dissertation 1907; Z. f. Math. u. Physik, Bd. 56, 1908, S. 1—37. 



186 Theorie des Widerstandes fiir groBe Reynoldssche Zahlen. 

sowie als Differentialgleichungen fiir ¢ und ¢, aus (2) 

rns are a wr) Fo Fa al ee sort 

(4) i A Ne a eR a St la 

mit den Grenzbedingungen 

C=CU=0,=C =0 fir y=0; we=U, C=C, =—2 fir 7p—oo. 

Die Auflésung der Gleichungen (4) geschieht am besten mittels Reihen. 

Blasius gibt die Ansitze 

= ee ai rca Sia? 7 noo, ee (5) ee cna UL ee ok 2 0 
= 2:4 3! 5! 6! fas 8! 

‘= C2 5 aan Caner 
(5a) t= dst ay) gt ay 

Die Kurve €=f(7j) muB im Nullpunkt eine in die 7-Achse fallende 
s ; : d : ‘ 

und im Unendlichen eine durch - 7 = 2 bestimmte Tangente haben. Setzt 
nN 

man Z=—, X=ay, so zeigt sich, daB die Funktion Z=Z(X) nur Po- 
a ea 

tenzen von at im Nenner enthalt. Die Differentialkurve dZ:dX = F(X) 

muB sich also asymptotisch dem Werte dZ:d X=2:a? nihern. Blasius 

bestimmt daraus den Wert a=1,515. Fiir die Koeffizienten der ¢,-Reihe 

ergeben sich ferner die Zusammenhange 

Goole dcs3 = — 16, Ga— OF cs = 4a8 

Ce = 6a*®-cs—8, Cr =—3203, cg=l1i7a®. 

Die Funktion ¢ erscheint dann zundichst in der Form 
1 

Ci =dA—168, 

wo 4A und B& nicht von d abhingen. Damit im Unendlichen der Wert 2 

erreicht wird, muB die Konstante d den Wert 

d = 8,25 
annehmen. 

Bestimmung der Ablésungsstelle. Die der Ablésung entspre- 
chende Koordinate E=€, ergibt sich aus 

OVy ee ees 
Or =0 oder Cs = SoS =0. 

Da die ersten Glieder der Reihen (5) und (5a) 
bed Ad c Sere L- Cro =O (Cs ep == also ete dé? =0 

ergeben, so wird € =0,65, also 
~ 

(6) ra = 0,65 |/—, 
es 

wihrend dem Maximum der Geschwindigkeit V die Koordinate 

(7) am = 0,577 |) 
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und dem hinteren Staupunkt die Koordinate 

(8) % =|" 
(08) 

entsprechen. Man kann weiter den Winkel gm bestimmen, unter dem die 

Stromlinie Y%=0 die Kérperoberflache verlaBt. Zu diesem Zweck ent- 

wickeln wir die Funktion Y in der Umgebung der Stelle €=€,, 7,=0 

in eine Taylorsche Reihe und benutzen die Grenzbedingungen. Wir 

haben zunachst mit F(&, y)=C&—(,&3 

3 : . aes a) 
FE, 1) = Fs, 0+ > 5 (Seg img, 1 = ‘ 

Da alle Glieder der Reihe bis »=3 verschwinden, so erhilt man wegen 

3 5 
or a ales AER (OF Ed ee 3 cH te Or 
On? ss) Dy > O£0r® S O45 > 02 =0 

die Gleichung 

(Cree eo SC Seana ecg) = 0: 

Nach Kinsetzen der oben berechneten Werte ergibt sich 

2 ree 
ery angi Aed Gk gay 

also der Ablésungswinkel 

(9) Cran = 11,5 > 

Man sieht jedenfalls, da die Stromlinie Y%—0 die Kérperoberflache unter 

einem spitzen Winkel verlaBt. 

Anwendung auf den Kreiszylinder. Wenn wir die vorstehenden 

Betrachtungen auf den Kreiszylinder anwenden, so kénnen wir in erster 

Annaherung das aus der Lehre der Potentialstromung bekannte Potential 

(10) @+iP =Ul2+—) 

benutzen, dem die Geschwindigkeit lings der Kontur 

(11) Vy = 2 Uo sing 

entspricht. Wenn wir an Stelle des Bogens s=a- p wieder « einfiihren, 

so wird . 

(lla) Vo = 2Uosin a 

Setzt man fiir den Sinus die Anfangsglieder der gewohnlichen Reihen- 

entwicklung, so wird oe: 
. nee Nope ame spat a 3s a 

also: 7 alte Ja ce 

ea 3°at 
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Man erhalt dann 

tm=1,4la, t=1,6a 

und die entsprechenden Winkel 

Gm =81°, Ya=93". 

Wenn man dagegen die Koordinaten vom hinteren Staupunkt an 

zahlt, so ergibt sich 

Tt Oy = 104s ee i a 

Um diese Differenz auszugleichen, verwendet Blasius statt des 

Sinus eine Funktion dritten Grades auf Grund der Methode der kleinsten 

Quadrate und findet 
2. 0,8! : 2 

(12) p= — Ug) ==y 

Die entsprechenden Werte fiir x und @ lauten dann 

wm = 1,75a Pn = 101° 

va = 197 a Pa—1la”: 

Die Stromlinie Y%=0 erhalt in erster Annaherung die Entwicklung 

(13) y= 4,1]/ (a — xa). 
no, 

Wenn z.B. Up=5 cm/s, a=5cm, v=0,01, so ergibt sich ein Ab- 

lésungswinkel von gy =5°24’; ‘bei einer erdBeren Geschwindigkeit 

U ,=20 cm/s findet man gp>= 2°42’. 

Im ganzen ergibt sich, daB die Ablésungsstelle bei der gleichmaBigen 

Bewegung im wesentlichen von der Reynoldsschen Zahl unabhangig 

ist, wahrend der Ablésungswinkel und daher auch die Ausdehnung des 

Kielwassers oder Wirbelgebiets um so kleiner ausfallt, je gréBer die 

Reynoldssche Zahl ist. 

$51. Methode von Boussinesq-Burgers. 

Um die Wirbelverteilung in der Grenzschicht und weiter die Fort- 
setzung der Wirbelbewegung im Kielwasser, etwa bei einem Kreiszylinder 
zu untersuchen, kann man sich einer Methode bedienen, die Boussinesq?) 
fir die Ermittling der Warmeleitung einer strémenden Fliissigkeit an- 
gewendet hat?). Unter Voraussetzung ebener Verhiltnisse wollen wir 

) J. Boussinesq, Caleul du pouvoir refroidissant des courants fluides, Journal 
de Liouville (6) 1, 1905, S. 285. 

*) Vgl. fiir das Folgende J.M. Burgers, Stationaire stroomingen in een vloeistof 
met wrijving teweggebracht, Verslag van de Gewone vergaderingen der Wisen- 
Naturkundige Afdeeling, 29 (1921), II. Teil, S. 952—964. 
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ausgehen von der in § 46 angegebenen Differentialgleichung fiir die 
Rotation w der Fliissigkeit in der Grenzschicht 

(1) Ow 

Ot 

wo % eine bekannte Strémung, etwa die Potentialstromung um einen 
Zylinder, darstellt, die in groBem Abstand von dem Korper in den Parallel- 
strom U, tibergeht. Die Gleichung erhalt eine einfache Form, wenn man 

stationare Verhaltnisse annimmt sowie Strom- und Potentialfunktion als 

krummilinige Koordinaten einfiihrt. Setzt man etwa 

® = Uva ip — Uo? 

und benutzt die Gleichungen 

=vdIw—%B-Fw, 

Ou =. Op Ou = 0B 

On © Oy Oy" O27 
so wird 

(O?w O2w ae ee 

Aw = Vola 21 am (Ga) +(5, I 

ee ee OpOw . OB Ow , Ow | (OB \2 Op\2 

Bs Pm = Ue(50 oo + 55 gy) = Uo ge lan) + (56)'| 

Man erhalt daher nach Division mit 

op\2 
(5 oe 

(2) : ee ks z fe oa 

die Differentialgleichung 

Od? 0B 

Wenn man die Reynoldssche Zahl als groB voraussetzt, so da das 

Wirbelgebiet auf eine diinne Grenzschicht beschrankt ist, so kann man 

in der Klammer die zweite Ableitung nach a, d.h. lings der Grenz- 

schicht gegentiber den Ableitungen nach #, d.h. normal zur Grenz- 

schicht vernachlissigen und an Stelle von (2) angendhert setzen 

Ow v Ow Ow 

(ea) On, . 0, 08. -~ opt 

Wenn v die Geschwindigkeit innerhalb der Reibungsschicht lings der 

Wand und V, die Geschwindigkeit in der Grenzlage der Reibungsschicht 

bedeuten, so hat man 

- 10, 16,06 10%, WV, 
Ae ine SOs on 2 O6* U,* 

u, f 
=-27°| wap. (3) v Vo p 
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Als Geschwindigkeit auferhalb der Grenzschicht haben wir 

V = iy Uo fy 

wobei im Unendlichen y sich dem Wert 1 nahert. 

Gehen wir nun von dem bekannten komplexen Potential 

(4) O+i¥ =U,(2+") 
aus, so ergibt sich 

(4a) a=a(1+%s), P=y(l ae 

Die Linie B= 0 zerlegt sich in die w-Achse (y= 0) und den Kreis r= a. 

Die beiden Staupunkte der Potentialstr6mung sind durch die Werte 

= — 24, Gs—2a 

dargestellt. Fiir diese Werte verschwindet der Faktor y?, den wir beim 

Ubergang zur Gleichung (2) weggelassen haben. In der Umgebung dieser 

Punkte, insbesondere des Punktes az, der in das Kielwasser fallt, ist die 

Vereinfachung der Gleichung (2) nicht mehr zulassig. Wir setzen daher 

bei Auflosung der Differentialgleichung zunichst a,< a< ad» voraus. 

Nun unterscheidet sich die Gleichung (2a) von der Gleichung der 

Warmeleitung nur dadurch, da’ an Stelle der Zeitvariablen die GréBe a 

getreten ist. Wir konnen daher nach § 29 als partikulires Integral mit 

€ als Parameter den Ausdruck 

(« — $) 
nehmen und fiir w die Lésung 

ct 32 

ik remeel(& Swe a eee 
(5) w= — 5 [ag —— ( is 41 («@ —§) 

ad \ak(a« — &) 
cy 

einfiihren. A(&) bestimmt die Wirbelmenge, die in der Zeiteinheit in der 
Umgebung des Punktes =a an der Grenzschicht entsteht; sie tritt 
gleichsam quellenartig in der B-Richtung aus der Wand heraus und wird 
gleichzeitig in der a-Richtung langs der Wand von der Strémung mit- 
genommen. Fiir den Geschwindigkeitsanteil haben wir zuniichst 

g e p 2 
<« ACé) "7 v= —2—5 |wde = — | dé—— [eee wae 

0 cy 

Setzt man wie friiher fiir das Fehlerintegral 

oa 

Fe(q) == [e-# dq, / 

0 
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so wird 

(6) v=—? [ A@) as. F.(— = 

Die Funktion Fe bringt in der Tat das Anwachsen der Grenzschichtge- 

schwindigkeit in der Querrichtungin charakteristischer Weise zum Ausdruck. 

Denn sie verschwindet fiir 80 und steigt sehr schnell bei wachsendem P 

auf den Wert 1, wenn dieser Wert theoretisch auch erst im Unendlichen 
: ¢ B : : 

erreicht wird. Wenn OV elas den Wert 2 annimmt, so hat das Fehler- 
/ a—é ) 

integral bereits den Wert 0,99 erreicht. Dann ist also B=4 | a a) 
. . . . . . . . : 

eine sehr kleine Zahl, und man sieht gleichzeitig, daB die Dicke der Grenz- 

schicht von =a, bis =a wachst und umgekehrt proportional der 

Wurzel aus der Reynoldsschen Zahl wird. Wird aber F',=1, so erhalt 

man fiir die Grenzgeschwindigkeit 

U eee 
(7) Vee vy, | A® dé 

und daher 

1 dV? 
7a) Bei ides 

Damit ist die Strémung in der Grenzschicht rechnerisch dargestellt, und 

man kann insbesondere auch den Ablésungspunkt oder den Beginn der 

Riickstr6mung ermitteln. In den Punkten a,(=—2a) und a,(=~+ 2a} 

wird die Geschwindigkeit V,=0, dazwischen liegt ein dem Wert a,, ent- 

sprechendes Maximum (Vy=2U,). Daher ist A positiv fiir a<a,, und 

negativ fiir a>a,. Es ergibt sich also, daB fiir a>a,, die negativen 

Bestandteile in dem Integral fiir wachsendes a starker zunehmen als die 

positiven, so daB ein bestimmter Punkt a=a, erreicht wird, in dem die 

Geschwindigkeit den Wert Null erhalt, um dariiber hinaus ihr Vorzeichen 

zu andern. Fiir kleine 6 kénnen wir nun wegen 

aus (6) den Ansatz herleiten 

a 

3 «6 A(é dé 
— See igs = B(w)s=0 = wo ° 

Vi. \ak eee 

Der Abloésungspunkt ist daher gegeben durch 

me E 
| A()dé _o. 

) Gq se 
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Wenn wir die gewohnliche Potentialstromung um den Kreis zugrunde 

legen, so haben wir 

Vo=—2U,sing, a=2acosp, 

Vo=— = 4a? — a?, 

daher nach (7a) 
2 

A(a) = ——- Up 

und nach (5) fiir die Stirke der dem Zylinder aufliegenden Wirbelschicht 

im Punkt a 

(hy If 2083 2. WU; a) = 24 
(8) Wo = — W | ——— ath ~| VC 2 Ne a 

ae (xk. 
27 Oy _ 3] ak a> 

Abb. 66. Grenzschicht und Wirbelbild in der Strémung um einen Kreiszylinder 

bei der Reynoldsschen Zahl 8 = 5200. (Nach Burgers.) 

Dieser Ausdruck verschwindet fiir den Wert a@,=a, der einem Winkel 

von 120° entspricht. 

Man kann nun annehmen, daB die Formeln (5) und (7) auch fiir 

a= a giiltig bleiben. Fiir die Fortsetzung der Grenzschichtstrémung im 

Kielwassergebiet, d.h. fiir a> a,, gibt Burgers ferner den erweiterten 
Ansatz ay 52 

~ A(é)dé&  £k(a— 6) (ly OC on ee eS 
J 2Vak(«e—&) 4h (c@ — «,) (a — §) 

cays 
s 

ay 

dem die Geschwindigkeitsverteilung entspricht 

(10) Ve = Vo —- 

wo Vo die Geschwindigkeit der Potentialstrémung ‘angs der w-Achse 
(a = 0) bedeutet. 
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Nach diesen Formeln, die durch graphische Integration ausgewertet 
sind, hat Burgers die Berechnung der Wirbelverteilung und der Ge- 
schwindigkeit in der Grenzschicht und ihre Fortsetzung im Kielwasser 
fiir verschiedene Reynoldssche Zahlen durchgefithrt. Fiir die Rey- 

noldssche Zahl R=—5200 ergibt sich etwa das beigefiigte Bild, das 

weder in der Lage der Ablésungsstelle noch in der Gestalt der Wirbel- 

schleppe eine vollstindige Ubereinstimmung mit den Prandtlschen 

Resultaten zeigt. Bei wachsender Reynoldsscher Zahl verschmiilert 

sich das Wirbelgebiet. 

$52. Ablésung und Widerstand bei nichtstationiirer 

Bewegung. 

J. Blasius hat ferner das Problem der Entstehung der Grenzschicht 

und der Ablosungsstelle bei plétzlichem Beginn der Bewegung eines Kreis- 

zylinders aus der Ruhe und bei gleichmibig beschleunigter Bewegung 

untersucht. Wir wollen kurz tiber die Arbeit referieren, ohne die sehr 

umfangreichen Ableitungen und Rechnungen im einzelnen auszuftihren. 

Wenn wir zunichst fiir den ersten Fall bei kleinem ¢, d.h. fiir den 

Beginn der Bewegung, die Tragheitsglieder vernachlassigen, so bleibt fiir 

die erste Niherung voz die Gleichung 

C) Gly: Oi 

(1) Naat Cap © 

die die bekannte Losung hat 

i 
9 p 
a V : ; 4 

(2) Vox = | e Udy mit n= J 
) HK 2) vt | i" | 

Dieser ersten Naherung kann man nun eine nach Potenzen von ¢t 

fortschreitende Reihe hinzufiigen und erhailt dann die Lésung in der Form 

| : ¥ Syn Va = Vox —- thi (7) + t? f2(n) ++ a Ds i” f(y) —— 2, if 7 : 

w=0 n=( 

UP a vt ste -Yn(x, 1). 
n=O 

Setzen wir = OW oe 
xo =V Co (n); Vom Ve Lee (1), 

so liefert die Grenzschichtgleichung fiir €) und ¢, die Differential- 

eleichungen. 

(4) cer + ants =0, Cr 4 207 40 eA, Ce 1) 

und die Grenzbedingungen lauten 

Co = =0, C,= Se Ce eee) uray) 00% 

Miiller, Theorie der ziihen Fliissigkeiten. 13a 
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Abb. 70. 

195 

Abb. 67—70 Wirbelentwicklung bei der beschleunigten bzw. plotzlich einsetzenden 

Bewegung eines Kreiszylinders in der Fliissigkeit (nach Tietjens). 

Man erhalt dann z. B. 

ut Pn 

(5) ae =* ne Tem dy aha (27?— 1) }{ fo ay} + : e721? 

1 2 4 4 
are CN a fedy —z—e-? 

\a 37 \z 

und bei Beschrankung auf die ersten Glieder 

= Ve. ee, ne 

co 

Zur Berechnung der ences haben wir 

a ae _ =(V cot ae aa fry 7 — Oe 
oy 2yr 

Nun ist ey 2 er 2 8 
=0 Vz =a \n 3) 73 

daher erhalten wir als Bedingung fiir die Ablésungszeit t, 

4 OV (6) L+(1+52)t5, =0. 

Fiir den Kreiszylinder ist zu setzen 

wat efile Ook 
V=20) SD oe pee reo 
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Fiir die Ablésungsstelle erhalten wir daher 

a 

(6 a) ta = 0,35 x 

U, cos a 

In Ubereinstimmung mit dem Versuch (vgl. Abb. 67—70) beginnt die 

. a > 

Ablosung bei © _= cos— =—1, und zwar zur Zeit 
x aw 

l 
ta = 0,35 a 

0 

Bis zu diesem Zeitpunkt hat der Zylinder einen Weg 

s=U,:t=0,85-a 

zuriickgelegt. Man sieht, daB diese Werte von der Geschwindigkeit, der 

Dichte und der Reibung unabhingig ausfallen. 

2. Wenn der Korper von der Zeit t=0 mit konstanter Beschleunigung 

bewegt wird, so haben wir zu setzen 

ne). 

(7) 1ép OV, OV , os 
ea eee 

Fiir die Lésung der Grenzschichtgleichung kann man eimen ahnlichen 

Ansatz machen wie im vorigen Fall 

Gy 2] vt au a) 

70 
ss 

8 9 0% ae . z 
(8) vn = > putilantt mit n= —“L, 

a on ' 2yve 
0 

a Olen 
yi =eli(n), %s—= Ea Ca(n), 

wobei fiir ¢; und ¢, die Differentialgleichungen gelten 

(9) Cy + 2yC{—40,4+4=0; Cf’+ 2n05—120,4+ 4[1—(CP—C, cy] = 0 
mit den Grenzbedingungen 

~ ley 

& SA) s C,=¢C,=0 fir n=0 (ve =vy=0) 
Tal: toy ee ry G,=1, ¢,=0 fur n=0co we=Ve=i-e). 

Es ergeben sich fiir €; und €, wieder Reihen, die ahnlich gebaut sind 
wie im vorigen Fall plotzlich einsetzender Bewegung, die also im beson- 
deren das GauBsche Integral 

4] qi 

SROs hone we Ap es 
[e dn=fe ray —s Vn 

co 0 

enthalten. Wir wollen auf die vollstandige Wiedergabe der Ausdriicke ver- 
zichten und nur die daraus zu gewinnende Ablésungsgleichung angeben. 
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Sie lautet bis zur vierten Potenz von t 

2 Oe es 4 O& 2 4 07 (10) 1 + 0,427 -  < — 0,026¢8 & — 0,012 =0. 

Wenn man die beiden letzten Glieder vernachlissigt, so bleibt 

2 oF = 6 
(10 a) Ua ous = 2,04 . 

Fiir den Fall des Kreiszylinders ist im hinteren Punkt, in dem die 
s : O* § 

Ablosung beginnt, ¢ == 0 zu setzen. Dann erhalt man bei Beriick- ) 
sichtigung des dritten Gliedes 

2 O& a 
(10 b) ta a = — 2,08. 

Setzen wir nun die Randgeschwindigkeit des Zylinders U=egt, also 

V =t-e(z)=2U-sin— = 2etsin—, 

so wird 

(10 ¢) eS eane = Vbzwa |= 1,04-—-— 
Mb v 

Eo SO ae €) COS vs 

Der vom Kreiszylinder zuriickgelegte Weg s=fe,t? betragt bei Be- 

ginn der Ablésung (= =n) 

S= OOo Ivan, SS=O%4 Gi. 

Wir haben in der Abb. 71, 

die der Blasiusschen Arbeit 

entnommen ist, das Strom- 

liniensystem ftir ein bestimm- 

tes Bewegungsstadium des 

gleichmaBig —beschleunigten 

Kreiszylinders wiedergegeben. 

Fur a= 10cm, y=0,01 cm?/s, 

Eo= 0,1 cm/s? ist 

Abb. 71. Strombild in der Nahe des Grenz- 

schichtwirbels in einem bestimmten Augen- 

4 : : .  blick wihrend der beschleunigten Bewegung 

Ablésungswinkel bereits bis eines Kreiszylinders in der Fliissigkeit. 

tiber 60° am Zylinder fort- (Nach Blasius.) 

geschritten. Fiir ¢)= 10 cm/s? 

wiirde sich dasselbe Bild auf die Zeit t—1,58s beziehen, und die 

Grenzschichtdicke ware im Verhaltnis 1:/10 verkleinert. 

Dy i ALO ~ f= DSS 7A 

gesetzt. Fiir diese Zeit ist der 

Miiller, Theorie der zihen Fliissigkeiten. 13b 
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8. SchlieBlich hat Blasius auch den Widerstand berechnet, den der 

Zylinder bei einer konstanten Beschleunigung erfahrt. 

pas : : a - OVy Ovy Ove 
Infolge der Kleinheit der Reibung konnen wir By und On Bogen By 

vernachlissigen und erhalten dann aus dem Ausdruck fiir die Spannungs- 

komponente Ov, 
Oy = 05 Tay — ls 

also als Kraft in Richtung der Strémung 

ue \ 

; CUpue d 
v= 2a | (p cos(p + ul by 2 play, 

0 

wenn b die Lange des Zylinders bedeutet. Der erste, auf den Druck 

entfallende Teil des Integrals wird - 

7 at 4 

; Op .. : Wp= 2ba | pcospdyp = — 2a? | dp DY dy; 

0 0 

benutzt man (7) 

e(e+ tes 

und 

é= 2 sing, 

so ergibt sich 

(11) Wyp=20ba*eQ, 

also eine Vermehrung der Tragheit um den doppelten Betrag der ver- 

drangten Fliissigkeit. Der auf die Reibung entfallende Teil wird 

2uba Oe Os OFC, rsa aa eclliest ? 31 3 Sie : Wr = - = | (te On? aE ei ya} NOY dip. 
0 

Da das zweite Glied fortfallt, so ergibt sich schlieBlich der Reibungs- 
widerstand 

(12) ‘7 = 4] 2r0ut-baégo, 

der daher der Wurzel aus der Dichte und Reibungszahl proportional ist. 

§ 53. Der achsensymmetrische Fall. 
Wenn wir in einem Meridianschnitt die krummiinigen Koordinaten a 

und y langs der Kontur und normal zur Kontur einfiihren und den Ab- 
stand eines Punktes von der Achse mit r bezeichnen, so haben wir die 
Kontinuitatsgleichung 

0 (a) 
(1) = 
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die durch den Ansatz 
9 loa? WORE (2) See 

iP Ola 

befriedigt werden kann. Wenn wir den Einflu8 der Kriimmung vernach- 
lassigen, so erhalten wir fiir den achsensymmetrischen Fall die Gleichung 
der Grenzschicht 

; OV, Ov, Cp, Ol" OV O20, 
(3) Gown Loy mid) On)” Dyk ® 
die formal mit der entsprechenden Gleichung des ebenen Falles iiberein- 
stimmt. 

Die Betrachtungen von Blasius, die sich auf die Bewegung eines 

Kreiszylinders beziehen, sind von Boltze) auf die Kugel tibertragen 

worden, fiir deren Rand die Potentialgeschwindigkeitsverteilung 

V= 5 Uosin® 
zugrunde gelegt wurde. Wir wollen hier nur die Resultate angeben. 

Wenn die Kugel sich aus der Ruhe plotzlich mit der Geschwindigkeit 

U, bewegt, so ergibt sich, daB die Ablésung in einem Punkt ?—z be- 

ginnt nach Ablauf der Zeit s 
to = 0,39 4, 

0 

wahrend die Kugel einen Weg s=0,39 a zuriickgelegt hat. Im Laufe der 

Bewegung riicken die Ablésungsstellen, die auf einem Parallelkreis senk- 

recht zur Bewegungsrichtung liegen, mit abnehmender Schnelligkeit 

weiter, so daB nach Ablauf der Zeiten 

wy @ a 
0,457 tiie bzw. 0,853 ->- 

die Parallelkreise (= 150° bzw. #==120° erreicht sind. Wenn die Kugel 

sich um eine Strecke s =a weiterbewegt hat, betragt der Ablosungswinkel 

9@=117°, und nach unendlich langer Zeit erreicht J den Grenzwert 5 

Die weitere Untersuchung bezieht sich auf die Ermittlung der Dicke 

der Wirbelschicht an einer bestimmten Stelle des Kugelrandes und auf 

den Verlauf der Stromlinie ¥Y — 0, insbesondere vom Beginn der Ablosung. 

Tragt man fiir verschiedene = den Abstand y der Nullstromlinie als 

Funktion von ¢ auf, so ergeben sich angenihert geradlinige Kurven 

(ai =const. Die Dicke der Wirbelschicht wachst also mit konstanter 
dt a 

Schnelligkeit. Das Resultat befindet sich nicht in vollstandiger Uber- 

einstimmung mit der Erfahrung, welche zeigt, daB das Anwachsen der 

1) E. Boltze, Dissertation Gottingen 1908. 
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Wirbelschicht immer rascher und rascher vor sich geht, so da ihre Dicke 

in kurzer Zeit mit dem Kugelradius vergleichbar wird. Diese Unstimmig- 

keit hat darin ihren Grund, daB die Glieder von héherer als der 2. Potenz 

von t vernachlissigt sind. Auch die weiteren Aussagen von Boltze sind 

nur unter dieser Voraussetzung zutreffend. Boltze hat ferner fiir eine 

bestimmte Zeit, in der der Ablosungswirbel schon eine gréBere Ausbildung 

erfahren hat, das Stromlinienbild konstruiert, um daran den Verlauf der 

Geschwindigkeiten zu studieren. Es ergab sich, dai die Wirbelstarke, 

die dem negativen Gradienten der Geschwindigkeit proportional ist, 

absolut am groBten auferhalb der Stromlinie “=O ausfallt und in 

der Nahe der Korperoberfliche nur gering ist. Da das Strombild sich 

nicht wesentlich von dem entsprechenden Bild der Str6mung um eien 

Kreiszylinder unterscheidet, haben wir von der Wiedergabe abgesehen. 

NEUNTES KAPITEL. 

Rotation fester Kérper in einer zihen Fliissigkeit. 

§ 54. Allgemeiner Ansatz fiir die gleichmifige langsame 
Drehung. 

Wenn ein Rotationskérper, etwa ein Kreiszylinder oder eine Kugel, 

in einer zihen Fliissigkeit um die Achse in Drehung versetzt wird, so 

wird sich die Bewegung von der mitgefiihrten Grenzschicht aus auf die 

Flissigkeit tibertragen, derart, dai die Drehgeschwindigkeit der Fliissig- 

keitsteile von dem vorgegebenen Wert am Rande mit wachsendem 

Abstand von der Achse abnimmt bis auf den Wert Null im Unendlichen. 
Setzen wir eine langsame, gleichmaBige Drehung um die z-Achse voraus, 
so kénnen wir von den radialen Zusatzbeschleunigungen absehen und 
annehmen, da die vorkommenden Gréfen von dem Drehwinkel @ unab- 
hangig sind. Dann erhilt bei Einfithrung von Zylinderkoordinaten die 
auf die tangentiale Geschwindigkeit bezogene Bewegungsgleichung nach 
§ 8 die Form 

(Orv) 
) = eee . (1) Gol acre 

Wenn man die Stromfunktion gemai8 

ea POE 0) ey OF OF «& 04 vhs .= - = -——_ - be = — = -—?°* =i) = Oy Or r? vy Ox Or ne) RG eS eas 
einfiihrt und nach r integriert, so ergibt sich aus (1) die Differential- 
gleichung fiir WY in der Gestalt 

: 1d tO je, 
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wo f eine Funktion von z und ¢t, und Y eine Funktion von z,V 02+ y= 

und ¢ ist. Langs der festen Grenzen verschwindet die Tangential- 
aM ‘ : go 

geschwindigkeit, d.h. es wird i =0; langs des Drehkérpers hat man 

ae 
Pe SS) = PUES 

Die aus (3) durch Differentiation nach r abgeleitete Beziehung 
oe rian 208) 0 

fiihrt mit Benutzung von (2) und Einsetzung von 

Cee ase or 
Or? r Or Oly 

zur Differentialgleichung fiir die Winkelgeschwindigkeit 

Ow 3 Aw Ow Ow 

Or? a r Or dz2| ot 

Die Zirkulargeschwindigkeit v=ra genigt der Gleichung 

2 ,) 2 v geet 245-28 

(4) 

(5) 

Betrachten wir ein Element der Oberflache, dessen in die Fliissigkeit 

weisende Normale mit der z-Achse Oz den Winkel # bilden mége, und 

nehmen wir die Ebene durch Oz und das Element als Nullmeridian 

(r=x, y=0), so finden wir 

Ovz, , Ovy\ _ iF eo. ow a or” 

Rei Gat a) may ee a) fey = Horde 

Die Projektion des Elementes auf die wy-Ebene ist df cos #, aut die 

yz-Ebene df sin 0}. Daher erhalten wir als tangentiale, auf die Flachen- 

einheit bezogene Kraft 

AM 2 yp 62? 

Thy = (Sa a )sin — la, —— went 

ay o2 jin 02 

(6) = «(= 7 Ort ) sind — 4 bar dz COS! ‘p 

0 flo Oy . 
== fla ( Br) — ba dz cos wv. 

Da das Linienelement des Meridians die Lange 

dz dr 
OP ere as oer 

sin # cos wv 

und die durch Drehung um die z-Achse entstehende Ringzone den 

Flacheninhalt 
d 

dS = —277r- zs 
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besitzt, so wird das entsprechende widerstehende Drehmoment 

(Ml @) ee 
(7) dM =2rur* se ( g 

or 
= a | de 27 ur? A. dr. 

Mit Benutzung von (3) erhalt man daraus 

y 1 (Od 4 
(7a) dM =2nprt|20d2+7 Side + ~ fletde—al.)|: 

Wenn man w in den Ausdruck fiir dM einfiihrt, so ergibt sich 

Ow Ow 
lad — ») 3 — -—— ip —— (7b) dM =2aur jade + Sear. 

Mit Einftthrung von ds kommt 

aM=27u (Se sind + 2” cos) ds 
(Tc) : Or Oz 

c 3 
Cw 

=27ur?~ads. 
; On 

Bei der Integration ist zu bedenken, daB langs des Rotationskérpers 

die GréBen z und r durch eine Gleichung 

2= Fir) 

der Meridiankurve miteinander verbunden sind. 

§55. Stationire Drehbewegung von Zylindern in der 

Fliissigkeit. 
. eda: PGS Teg 

1. Bei stationarer Drehbewegung kénnen wir = =0 und j= f(z) 

setzen. Dann erhalten wir 

aon 1 
(UU » : AP =" ie 

oaer 

(1) Ore 1 0 a 0? De 1 

or r or 02 i (2)- 

Wird die Bewegung der Flissigkeit etwa von einem oder mehreren 
konzentrischen, unendlich langen Kreiszylindern erzeugt, so kann die 
Stromfunktion Y als von z unabhangig angenommen und die Funktion i 
einer Konstanten gleichgesetzt werden. Sei etwa f=4.4, so ergibt sich 
aus (1) oder 
(2) PE ld Hos L ey de 

dr® hip r ar 

die allgemeine Lésung 

r——| Ss thal 

(3) P= Ar? + Blogr+C, 

waihrend die Drehgeschwindigkeit als Losung der Gleichung 

aw 3 dw = 0 
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sich zu 3 

(4) ES i eee 
berechnet, wobei die Konstanten A und B durch die besonderen Grenz- 

bedingungen zu ermitteln sind. 

2. Wenn z. B. die Fliissigkeit das Innere eines sich drehenden Hohl- 

zylinders erfiillt, so ist nur der Fall B=0 méglich und man sieht dann, 

dafs die Flissigkeit mit der Zylinderwand wie ein fester Kérper rotiert. 

3. Sei ferner die Fliissigkeit zwischen zwei koaxialen Zylindern ein- 

geschlossen und sei w, die Winkelgeschwindigkeit des inneren Zylinders 

mit dem Radius r;, waihrend der auf ere Zylinder mit dem Radius 7. als 

fest angenommen wird, so erhalt man 

l r rr? 

A=3t14-33 B=-wm=— 
2 A pe? 2 2 
a Tein re —r} 

(4) Woe se 
2 2 2 (2 2 Ts Tas = G9) 

O = yy —— i, 

Woe 3 — 17) 
i 

und als widerstehendes Kraftepaar pro Langeneinheit des inneren Zy- 

linders De pig 
5 = 2 ry (a) = —47-—*, w1. 
( ) dr [ig—=V115| Ue ry 

Das widerstehende Moment ist also proportional der Dreh- 

geschwindigkeit des Zylinders. 

Wenn im besonderen der Radius des auBeren Zylinders unendlich 

eroB wird, so ist d=0 zu setzen und wir erhalten 
2 2 

ry 5 2 (5a) WU = W1 aN CTO Ole M = —47u0,r;. 

Da also die Geschwindigkeit der Fliissigkeit umgekehrt proportional 

dem Abstand von der Achse nach aufBben hin abnimmt, so ist die Ge- 

schwindigkeitsverteilung dieselbe wie im Potentialfeld in der Umgebung 

eines in der Zylinderachse gelegenen Wirbelfadens. Das widerstehende 

Moment erweist sich als proportional der Winkelgeschwindig- 

keit der Drehung und dem Quadrat des Zylinderradius. 

Wenn dagegen die Radien der beiden Zylinder nur wenig voneinander 

verschieden sind, so ist die dazwischen liegende Fliissigkeitsschicht mit 

einer diinnen ebenen Schicht vergleichbar. In der Tat ergibt sich dann, 

er aan O=re—t1, 2rm=n+tre, A=r—n 

setzt und nur die ersten Potenzen von 6 und / beriicksichtigt, 

ry w= (0—A) re 
Ne 

(U1. 
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Die Geschwindigkeit @ nimmt also angenaihert linear vom Werte 1 

bis zum AuBeren Grenzwerte Null ab. Fiir das Drehmoment erhalt man 

‘ ) 207 UW, 3 27UM, 3 2 \2 
(6) M — Fy Tim (1 — Ap ~~ ‘) Tine 

we 

4. Wenn sich auch der aiiuBere Zylinder mit der Winkelgeschwindig- 

keit w, dreht, so wird die Drehgeschwindigkeit fiir einen mittleren Punkt 

13, (7? — Tj) + ory (73 — 7°) 
(7) (Ue 72 (72 ee. 7?) 

und das am inneren Zylinder angreifende Drehmoment 

4nurir? 
(8) M = — ae ee (Wy — We). 

Pa 

Das Moment verschwindet, wenn beide Zylinder sich in gleichem 

Sinne mit derselben Geschwindigkeit drehen. 

5. Wenn wir zwei vertikal stehende Zylinder haben und als aufere 

Kraft die Schwerkraft beriicksichtigen, so lauten die beiden auf die 

Koordinaten r und z beziiglichen Bewegungsgleichungen 

10p vp 1f, a 1Lép_ 
(9) 0 Or ar T i. (e (247+ r : 7) Oz 3 

aus denen sich die Differentialgleichung der Druck- oder Niveauflachen 

2 ergibt zu l l Biz 
~dp=gde+ —(2Ar+ —) dr. 

Wenn z. B. fiir z=0, r= ry der Atmospharendruck p= po gesetzt wird, 

so erhalt man das Integral 

1 55 i Be | 
(10) - (p.— po) = 92 + 2A? (r? — 73) + 4AB log Seay | ary ast : 

2 ~ 

das fiir p=» in die Gleichung der Oberfliche iibergeht. 

$56. Versuche mit rotierenden Zylindern. 

Die Grundformeln des vorigen Abschnitts beziehen sich auf den Fall 
unendlich langer Zylinder. Bei den entsprechenden Versuchen mit end- 
lichen Zylindern mufs man daher mit sekundiren Stérungserscheinungen 
rechnen, die namentlich von den Endflachen ausgehen, und die fiir die 
strengere Theorie nur schwer zugiinglich sind. Wir werden spiiter noch 
Gelegenheit haben, auf diese Verhaltnisse einzugehen. Vor der Hand 
gentigt es festzustellen, daB bei kleinen Geschwindigkeiten die stérenden 
Kinfliisse nur geringfiigig ausfallen, und daB die gegebenen Formeln bei 
eventueller Verwendung von Zusatzgliedern fiir einige Versuchsmethoden 
im wesentlichen ihre Giiltigkeit behalten werden. 
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Die Versuche kénnen in erster Linie dazu dienen, das Reibungs- 
moment und daraus die Zaihigkeit der verwendeten Fliissigkeit zu er- 
mitten. Wenn z. B. der aufere Zylinder durch eine Antriebsvorrichtung 

in gleichmaBige Rotation versetzt wird (vgl. Abb. 72), so wird das auf 

den inneren Zylinder ausgeiibte Drehmoment durch die Torsion des 

Fadens bestimmt, an dem der Zylinder aufgehingt ist. Die Torsions- 

konstante kann durch einen besonderen 

Schwingungsversuch bestimmt werden. Die Ip 

Wirkung der Endfliche des inneren Zylin- 

ders kann nach Maxwell dadurch in Rech- 

nung gesetzt werden, daB man die ,,Tauch- 

tiefe’* h des Zylinders um eine fiktive GréBe k 

vermehrt, die nachtraglich wieder eliminiert F 

werden kann. Mift man z. B. das durch 

das ‘Torsionsmoment ausgeglichene Dreh- 

moment fiir zwei verschiedene Hoéhen h 

und h’, so erhalt man 

M=4nruwok(h+kh, M =4auwl(h' +h), — 
wY 

oy 

wo ftir 2 zu setzen ist 

eal 1 

Dann wird 

(la) M’—M=4xuw(h'— h):( 2 

Aa 1 

We Tis , 

Wenn die ringformige Fliissigkeitsschicht 
Abb. 72. Versuch mit rotie- 

renden Zylindern zur Be- 

stimmung der Zihigkeit der 

eingeschlossenen Fliissigkeit. 

zwischen den Zylindern sehr klein ist, so 

haben wir die Niherungsformel 
3 ; 

(2) M = 2710 (bh - k) r% 
( 

anzuwenden. NaturgemiB wird es schwer sein zu erreichen, dab die 

Zylinder absolut konzentrisch angeordnet sind. Hat z. B. die Schicht- 

dicke ein Maximum 6(1+-m) und ein Minimum 6(1—m), so kann man 0 

ersetzen durch O(L+ m cos). 

Der entsprechende Korrekturfaktor ist dann durch das Integral gegeben 

22 
aa 

| é . : 
2 

m* 

- | ¥__= = | (l— mcosp + m*cos*p~)dp~=1+ >; 
272) 1+mcosp Dae 

5 

0 5 

und es ergibt sich mit k= 0 
3 2 

r m~ 

(2a) M=22uwh (1 ae ii 
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Wenn die Extremwerte von 6 z. B. 0,9 und 1,1 betragen, so wird 

; : : ean 
m—0,1, und man sieht, dafi das Drehmoment sich nur um =, ver- 

erdBert. Um die GroBenordnung des Drehmoments zu zeigen, nehmen wir 

etwa!) 7,=14 em, 72=14,25cem, h=8em, w=0,01 6m "sO 2 se 

(entsprechend einer Umdrehung pro Sekunde). Dann hat das Moment 

angenaihert den Wert 

M = 87?-10-2-8-2-142 = 35120Erg. 

Durch Versuche dieser Art laBt sich bestatigen, daB fiir kleine Ge- 

schwindigkeiten das Drehmoment angenihert proportional ist dem 
, ae = F x. Jud é = 

Reibungskoeffizienten, und daB das Verhaltnis — nahezu eine Kon- 
i Ww 

stante ergibt, die sich im Verhaltnis des Reibungskoeffizienten andert. 

Man kann ferner aus dem Drehmoment 

auf die Gréfe der Zahigkeit schlieBen. Dazu 

eignen sich besonders Flissigkeiten mit groRer 

Reibung. Bei der Versuchsanordnung von 

Searle?) dreht sich der innere Zylinder unter 

dem Antrieb zweier Gewichte mg, die durch 

Vermittelung der Rollen S zwei Faden an 

dem Hilfszylinder Z zur Abwickelung bringen. 

Sei 7’ die Dauer der Umdrehung, so ist die 

Drehgeschwindigkeit des Zylinders 

27 ae 

Sei ferner d der Durchmesser des Hilfs- 

QU, = 

zy linders, so gibt die Gleichsetzung der Arbeit 

der Gewichte und der widerstehenden Arbeit 

we d 2Q7 
Abb. 73. Apparat von Searle amg tors = Tee 
zur Bestimmung der Reibung — ajgo 

von Fliissigkeiten. On = ee . 
gdmT 

Aus dem Ausdruck fiir das Widerstandsmoment des inneren Zvylinders 
erhalt man bei Einfiihrung der zusiitzlichen Hohe k 

(3) rina as 
‘ an ay 47 Ww, 

i Hdl! M m T 

2k prde RE a taslouke 

Bei veriainderlicher Masse m und konstanter Hohe bestimmt man die 
Zeit T’; dann mufS gemifB der Formel das Produkt m7 konstant sein. 

r 

1) Vel. Bouasse, a.a. O. S. 226. 

*) G. F.C. Searle, Proc. Camb. Phil. Soc. 16, 7 (1912). 
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Wenn fh sich andert, so stellt die Kurve m7 —=f(h) eine gerade Linie dar, 
deren Schnittpunkt mit der h-Achse vom Anfangspunkt den Abstand i: 
liefert. 

Der Apparat von Searle ist in erster Linie fiir die Untersuchung von 
ausgesprochen zaihen Fliissigkeiten geeignet. Setzen wir etwa d—=2 cm, 

r= 1,9, r2=2,5, m=100, T=98., h=10 cm, K=0,5 cm, so wird 

ju=247gscm-*. 

Damit ist etwa die Gréfenordnung des Reibungskoeffizienten be- 

zeichnet, wie sie hier vorauszusetzen ist. Molin?) fand mit Hilfe dieses 

Verfahrens, dab j von der Winkelgeschwindigkeit nicht mehr unabhiingig 

ist, wie zunachst in der Theorie vorausgesetzt wurde. Es zeigte sich 

namlich, da bei konstantem / das Produkt m7’ nur fiir gréBere m kon- 

stant bleibt, wahrend es fiir kleinere m zunimmt und einer vertikalen 

Asymptote sich annahert. Daraus wiirde folgen, da die Zahigkeit mit 

abnehmender Drehgeschwindigkeit wachst. Die Abhingigkeit laBt sich 

nach Molin durch eine Formel folgender Art darstellen: 

(4) {t= Mo -+be-4*%., 

Man sieht daraus, da} sich die klassische Theorie von Stokes-Navier 

nicht ohne weiteres auf Fliissigkeiten mit sehr groBer Zahigkeit anwen- 

den laBt. 

2. Der laminare und turbulente Zustand. Wie wir gesehen 
é : ree a. ie ae 

haben, ergibt sich, da das Verhaltnis — des Reibungsmomentes und 
Ww 

der Geschwindigkeit ftir kleine Reynoldssche Zahlen konstant ist, 

unter der Voraussetzung, daB sich die Zylinderabmessungen nicht andern, 

Wenn die Geschwindigkeit den kritischen Wert @, tiberschreitet, so wird 

der Strémungszustand turbulent, und das Kraftmoment steigt, einem 
: < ; a 5. tle 

parabolischen Gesetz folgend, schneller an, wahrend das Verhaltnis 
WwW 

etwa linear mit w zunimmt. Der kritische Wert bezeichnet genau ge- 

nommen diejenige Geschwindigkeitsgrenze, unterhalb welcher der Be- 

wegungszustand notwendig laminar ist, wahrend fiir m >a, zunachst 

beide Strémungsarten méglich sind. Das Drehmoment variiert fiir 

@ > m, zwischen einem Maximum und einem Minimum, die den Punkten 

B, und B, des Diagramms entsprechen. Je besser der Apparat kon- 

struiert und je gleichmaBiger die Rotation ist, desto langer laBt sich 

der laminare Zustand erhalten. Nur entsprechen die iiber A hinaus ver- 

langerten Teile der laminaren Kurven einem nicht mehr stabilen Zu- 

1) K. Molin, Proc. Camb. Phil. Soc. 20, 23 (1920). 
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stand. Couette?) , dem wir mehrere Versuche verdanken, fand bei einem 

Zylinderradius von 14,51 cm und einer Schichtstarke der Fliissigkeit von 

6—0,237 em und einer Reibung =0,01096 g cm~*s als kritische Um- 

drehungszahl 56 Touren pro Minute, der eine Reynoldsschen Zahl 

R,~ 1800 entspricht. Wahrend der laminare Zustand durch R, << 1806 

charakterisiert ist, wird im ausgesprochenen turbulenten Bereich ®, > 2500. 

He 

| M 
wo 

7 Bz 

re A ie 

| MM a ‘By 

M A a | | 
i 

re | 
| 5 | l 
| / | | 

/ 
| eT) 
1 1 : vz | 

wr, 0 w, 

Abb. 74. Abb. 75. 

Abb. 74—75. Abhingigkeit des Reibungsmoments eines in der Fliissigkeit rotieren- 

den Zylinders von der Drehgeschwindigkeit ftir den laminaren und turbulenten Fall. 

Die Zahlen beziehen sich zunachst auf den Fall, daB der iuBere Zylinder 

rotiert. Mallock?) hat auch den Fall untersucht, dafs der innere Zylinder 

sich dreht. Kin fiir beide Falle angestellter Versuch ergab folgende Werte: 

AuBerer Zylinder beweglich 

(r1 = 7,638, r2=9,94, re —71 = 2,31 cm): ,<.75 Touren/min., ni> 104. 

Innerer Zylinder beweglich 

(1 = 7,63, re = 8,68, re —71 = 1,06 cm): n,<77 Touren/min., ne> 94. 

Trotz der verschiedenen Dicke der fliissigen Schicht stimmen die 
Grenzen der Kennzahlen ungefahr tiberein. Da aber die relative In- 
stabilitat im zweiten Falle mit der Dicke der Schicht wachst, so besitzt 
der Fall des rotierenden Innenzylinders jedenfalls eine erdBere Instabilitat. 
Wenn man die Wirbelstirke 

eee O(r vy) 1 O(r? w) 

2r Or QF Or 

M, eben Ann. d. chim. et phys. (6), 21, 433 (1890); J. de Phys. (2) 
(1890). 
A. Mallock, Phil, Trans. A, 187, 41 (1896) ; 

2 
se 
566 

*) 
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bildet, so ergibt sich in beiden Fallen 

r2 2 

(5) WwW = We as w= > 
pei hed a 

Wenn =z, ist, so erhalt die Wirbelung in dem instabilen Falle 

eine wesentlich kleinere GréBe als im anderen Falle. 

Uber die Resultate der theoretischen Stabilitaétsuntersuchung soll 
noch spater ausfiihrlich gesprochen werden. 

§ 57. Theorie des geschmierten Zapfens. 

Die in §55 gegebenen Formeln fiir zwei koaxiale, in der Fliissig- 

keit rotierende Kreiszylinder kénnen auf den Fall eines Zapfens ange- 

wendet werden, der sich in einer kreiszylindrischen Lagerschale dreht, 

wahrend der enge Zwischenraum zwischen Zapfen und Lager mit einem 

zihfliissigen Schmiermittel (Ol) ausgefiillt ist. Wenn Zapfen und Lager 

konzentrisch sind und ihre Radien a,a +6 sich nur um eine kleine GréBe 6 

unterscheiden, so ergibt sich fiir die Einheit der Zapfenlainge aus § 55, (6) 

das zur Uberwindung der Reibung erforderliche Drehmoment 

(1) VM =27a— = Pee, 

wo u=@.a die Umtfangsgeschwindigkeit des Zapfens bedeutet, wihrend 

die resultierende Druckkraft infolge der Kreissymmetrie verschwindet. 

Tatsachlich kann die konzentrische Lage von Zapfen und Lager nur bei 

unbelastetem, Zapfen eintreten, oder aber als Grenzform fiir kleine Drucke 

und hohe Geschwindigkeiten. Jede Belastung wird zur Folge haben, 

daB der Zapfen sich aus seiner zentrischen Lage verschiebt, und zwar im 

Falle der Drehung in einer gegen die Belastung im Drehsinn geanderten 

Richtung. 

Um die Vorginge am Zapfen unter der Voraussetzung einer exzentri- 

schen Lage der Zapfen- und Lagerquerschnitte, d.h. einer zylindrischen 

Flissigkeitsschicht von verinderlicher Dicke, darzustellen, kénnen wir 

nach Sommerfeld?) ankniipfen an den friiher behandelten Fall einer 

' ebenen, auf einer Schmierschicht ruhenden Tragflache, die zur Unter- 

lage um einen (kleinen) Winkel geneigt ist. Es wird durch die Rechnung 

bestitigt, daB entsprechend diesem ebenen Falle die exzentrische Lage 

die Bedingung dafiir ist, da ein endlicher Zapfendruck vom Lager auf- 

genommen werden kann. Um das zu zeigen, gehen wir aus von der 

1) A. Sommerfeld, Zur hydrodynamischen Theorie der Schmiermittelreibung, 

Z. f. Mathem. u. Physik, Bd. 50 (1904), 8S. 97—155; Z. f. techn. Phys., Bd. 2 (1921), 

S. 58—63; 89—93. 
Miiller, Theorie der ziihen Fliissigkeiten. 14 
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Gleichung (2), § 10, die wir auf ein elementares, als eben anzusehendes 

Stiick der Schmierschicht anwenden. Beziehen wir die Polarkoordinaten 

auf den Mittelpunkt 0 des Zapfens und die horizontale Zentrale beider 

Spurkreise (Abb. 76), fiihren also ad 

AP statt dx ein, so haben wir 

d, h—h 
(2) i. = 6uua—,- > 

wobei die Dicke h von 6, der Exzen- 

trizitat e und der Amplitude m gemaB 

der Gleichung 

= 0+ ecosep 

\ abhangt. Der Druck p ist, wenn die 

ss \N < Schmierschicht ununterbrochen ist, 

SSS eine stetige und periodische Funktion 

Abb. 76. Zur Theorie des geschmierten yon gy, also 

Zaptens. 
pip +22)=ply); p22) =p(0). 

Integrieren wir daher (2) von 0 bis 22, so erhalten wir 

Ree 22 

al 

Pane 

alg 0 = p(27) — p(0) = 6Buau [78 

< 0 
Setzen wir Daa und benutzen die ere 

22 

zi dp  _ _2n 

Gai cosp Va? - = it. 

(3) Ufc _ dd, =o dp _ 27 z 

oar er F («+ cosy)? (an he : 

IL ahh 2 «? 
Js =—3 ro eae 

2 da : on 
(cc? a= l)2 

so kommt fiir ho 

J 2 2 (4) hore tee one 
Js 2c? +] 

und fiir das entsprechende Argument des gréBten und kleinsten Druckes 

(5) COS Po = — aot i 

Fir e=0(a=oo) wird m=+-, fir e=6 wird Yo=+a. Im all- 

gemeinen Falle liegen die Stellen extremen Druckes zwischen diesen 
Grenzen. Mit ho ist das Druckgefalle nach (2) in vollig bestimmter Form 
durch die GréBe a dargestellt. 
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Fir die tangentiale Reibung finden wir unmittelbar aus dem friiher 
gegebenen Ausdruck fiir die Geschwindigkeit 

(6) Trp = — LU 
‘ 

2. Die genauere Behandlung des Zapfenproblems fiihrt Sommerfeld 

aut die Integration der Differentialgleichung fiir die Stromfunktion WY 

der langsamen Strémung (vgl. § 34) zuriick 

AAPG NW). 

Die Grenzbedingungen sind, wie ohne weiteres verstindlich ist, 

a lite ot fire 
(7) or Og 

| Cita Lamers Neti el ar, 
PE ean ur r=a+h. 

Setzen wir WY in der Form an 

(8) i => Artlgr + (B— 24)" + Clgr + D, 

so erhalten wir ftir die Konstanten nach (7) folgende Werte 

es 4h — 3h, a 
a Ope Ol rege, 

h—-h 4h — 3h 
(8a) B= —t—,— alga-u— op “(1 —Iga)u+~ (1 —lga), 

ele Va ea 4h — 3h, u 
matt h qu he = Sina 

Daraus leitet sich dann das Druckgefalle wie folgt her: 

CD Mae aOp 
mops 1 

h—hy yp wea oho u 
(9) = 6uau—,; lu i ie 

Das erste Glied ist mit (2) identisch, und die beiden zusatzlichen 
h h 

Glieder sind im Verhaltnis zu (2) klein von der Ordnung = und a WO- 

mit die Berechtigung der Naherungsrechnung nachgewiesen ist. Der Wert 

oe 
_ stimmt sogar, wie man sofort 

T=4 
der tangentialen Reibung T,.4 = | 

bestatigt, genau mit (6) tiberein. 

Wenn man die Integralausdriicke (3) benutzt, erhailt man als all- 

gemeines Gesetz fiir die Druckverteilung und die Reibung 

6uau sin p ce -} 

(10) P(P) = Po + J 2@+1 a+cos 2 «+ cos)’ 

u 4 3.a(a? — 1) | : 

(11) Trp (fp) = eee atcosp (202+ 1)(« + cosg)? 

14* 
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Der Druck setzt sich zusammen aus einem konstanten Teil, der fiir 

den Gesamtausdruck nicht in Betracht kommt, und einem verinder- 

lichen Bestandteil p,, der bei der angegebenen Drehrichtung des Zapfens 

lings der oberen Halfte des Umfanges positiv und langs der unteren 

Hilfte negativ ist, wobei die Absolutbetrage fiir zwei in bezug auf die 

Achse symmetrisch gelegene Punkte gleich ausfallen. Die Reibung wirkt 

im allgemeinen entgegen der Drehrichtung und wichst mit abnehmender 

Dicke der Schmierschicht. 

Summieren wir nun die einzeInen Normal- und Tangentialkrafte, so 

ergibt sich nach einfachen statischen Gesetzen eine Einzelkraft P, die in 

O angreift und vertikal gerichtet ist, d.h. senkrecht steht zur Verschie- 

bung des Zapfenmittelpunktes, sowie ein Reibungsmoment, das der 

Drehung entgegenwirkt. 

Aus lees ae 
P=a) |psingpdg —|tcospdp 

0 0 al 

ergibt sich durch Benutzung der Ausdriicke fiir p und t 
Q7 

Peers ‘h—h, 
= rn aa cospadyp. 

0 

Die vorkommenden Integrale lassen sich auf (3) zuriickfiihren: 
270 27 22 

‘ cosgdg "Gk "da feoedy fae gf ayaa, (« + Cosq) 1& + COS@ (@ + cosgp)* 
0 0 0 

27 22 272 

j cos pd _f do 

lhe + cosg)* =k (a + oa ag le +cosg)? Shel ok. Y 
) 0 

Man erhalt dann 

(12) 
OP. 27 (a 

buau fe =) "D2 nal , 

Ebenso wird 

Aa 47 ua*u 242 j2 4.2 
M=a? [cd = ae See 4 sr ua>u en ices TEP s 

(13) ‘ : Le eel) (2.0? + e) Jd? — e? 

Mod = 4nma «a?+2 

“au Vor — 7 Oa) 

Man sieht, dafs bei verschwindender Exzentrizitat (a@=oo) P ver- 
schwindet, wihrend der Ausdruck fiir das Moment in (1) ubergeht. 

In den Formeln (12) und (13) ist der wesentliche Inhalt des Sommer- 
feldschen Ahnlichkeitsgesetzes ausgesprochen. Durch Division der Glei- 
chungen ergibt sich die sogenannte Reibungszahl 

M _ d(a*+ 2) ua wu 

fs Pama alae a ae P F(a), 
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die z. B. fir a=1 (bei hinreichend kleiner Geschwindigkeit) den Wert 

annimmt. Die physikalischen Gréfen gehen also in die Reibungszahl 

nur in der Verbindung S ein. Es ergibt sich ohne weiteres aus den 

Formeln, da f und damit M minimale Werte erhalten fiir V2, und 

zwar J 2y2 
fmin = Gh ones 0,943 fo; Monin == 0,943 Pod : 

Beide Werte fo und fyi, Sind nur von den Lagerabmessungen 

abhangig und von P und uw unabhiangig. Fiir den dem Minimum 

zugeordneten Wert von a wird ferner 
2 carga BL. 

Wir erhalten daraus den giinstigsten Wert der Drehgeschwindigkeit 

(bei gegebenem P) bzw. den giinstigsten Wert des Druckes (bei gegebe- 

nem u). Sommerfeld fihrt fiir diese Werte die Bezeichnung Uber- 

gangsgeschwindigkeit bzw. Ubergangsdruck ein. Der Betrag 

der Ubergangsgeschwindigkeit wachst mit gréBer werdendem 

Zapfendruck und mit abnehmender Zahigkeit des Schmier- 

mittels (Abb. 77). 

Fiir den Grenzfall a—>oo (hinreichend groBen Drehgeschwindigkeiten 

entsprechend) erhalten wir 

27 aru 2m uau 1 a 

Abb. 77. Zapfenreibungszahl in Abhiangigkeit vom Zapfendruck und der 

Drehgeschwindigkeit. (Nach Sommerfeld). 
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Zum Vergleich mit der Wirklichkeit beziehen wir uns etwa auf ate 

Beobachtungen von R. Stribeck+), deren Resultate hier in der graphi- 

schen Darstellung der {-Werte in Abhangigkeit vom Zapfendruck und der 

Drehzahl wiedergegeben sind (Abb. 78). Die Ubereinstimmung zwischen 

den theoretischen und Versuchskurven erstreckt sich auf den allgemeinen 

Verlauf (Abfall von einem Anfangswert auf ein gleiches Minimum und 

0140 

0,736 

0,06 

0012 

0,008 

0004. X, 

02376 
40 60 720 160 200 

Abb. 78. Zapfenreibungszahl in Abhingigkeit vom Zapfendruck und der 

Drehgeschwindigkeit. (Nach Stribeck.) 

nachfolgenden Anstieg), das Vorhandensein der Ubergangswerte fiir Ge- 

schwindigkeit und Druck und die Unabhingigkeit der kleinsten Reibungs- 

zahl von P und w. Das theoretische Ahnlichkeitsgesetz erscheint jeden- 
falls in der Nihe des Minimums wirklich erfiillt, indem hier die zu 

gleichem Verhiltnis = gehorenden Reibungszahlen zusammenfallen. Die 

immerhin recht erheblichen Abweichungen der MeSwerte von den Er- 
gebnissen der Theorie im einzelnen mégen zum Teil in der Unvollstandig- 
keit der mathematischen Voraussetzungen, zum Teil aber auch in der 

) R. Stribeck, Die wesentlichen Eigenschaften der Gleit- und Rollenlager, 
Z. V. D.I. 46, 1902. 
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von der Theorie nur schwer erfaBbaren Anderung der Zahigkeit der ver- 
wendeten Ole infolge Temperaturschwankung und anderer physikalischer 
Ursachen begriindet sein. Unter den Versuchen zur Verbesserung der 
Sommerfeldschen Theorie ist auSer dem von Giim bel-Everling!) 
ein neuerer bisher nicht ver6ffentlichter von A. Schiebel zu nennen, 
der ein mit dem Ritzschen verwandtes Naherungsverfahren anwendet 
auf den Fall, daB die Fliissigkeitsschicht den Zwischenraum zwischen 
Zapfen und Lager nicht vollstandig ausfiillt. 

§58. Langsame Rotation eines Zylinders in der Niihe 
einer ebenen Wand. 

1, Das Problem zweier exzentrischer mit verschiedener Geschwindig- 

keit rotierender Zylinder fiihrt auf gréBere mathematische Schwierig- 

keiten und sehr umstindliche Rechnungen. Bemerkenswerte Ansitze 

hat Frazer?) gegeben in einer Arbeit, 

deren methodische Gesichtspunkte wir 

bereits benutzt haben. Wir wollen hier 

y 

auf die Behandlung des allgemeinen 

Falles verzichten und nur den Spezial- 

fall behandeln, daB der eine Zylinder 

unendlich gro8 und in Ruhe sein mége, 

also das Bewegungsfeld einer durch eine 

feste ebene Wand begrenzten Flissigkeit 

j aj in der Nahe bestimmen, das von einem in de ABER TO Me Zalindens int dor Nahe 

einer ebenen Wand. 
der Wand mit der Winkelgeschwindig- 

keit @ rotierenden Zylinder vom Radius a 

erzeugt wird. Sei d=MO der Abstand des Mittelpunktes Jf des Kreises 

von der Wand, deren Spur wir als x-Achse nehmen, und sei b?=d?—a? das 

Quadrat der von O aus an den Kreis gezogenen Tangente (vgl. Abb. 79) ; 

dann kénnen wir nach § 34 die Stromfunktion in der Form einfiihren 

(i) —iP=2Fo(2)—2Fi@)+fpk)—fhe), 
wo z=a-+iy, z=a—iy komplexe Hilfsvariable sind. Die Grenzbedin- 

gungen lauten dann, wenn man id=c setzt, 

; wa” OF OF was 
1) fir den Kreisrand: vz —tvy = — a = 24 aoe also 2 re rer 

OF od 

ire Tae 
A oF OV A = 

2) fiir die ebene Wand (y = 0): ee Oat Boia, fir z—z=0. 

1) G aiabels Everling, Reibung und Schmierung im Maschinenbau, Berlin 1925. 

2) R. A. Frazer, Phil. Trans. R. Soc. London, Vol. 225 (1926), 8. 93 ff. 
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Da am Kreis 
a OES 

— ist, 
—C¢ Pimms Kb) 

(g—c)(z2-+c¢)=a", also i=; 

so erhalten wir daher die Funktionalbedingungen 

twa? Sela te +6? . ; 

ang = P| FO )+ (2S) Othe 

2 twa> ‘tc — b? tc—b? r ' 

i | -2659~ Pres )( FT) Oth 

Fi —tF{ O@+fh0=Fo)—-tF,O+hO= 

Eliminiert man f; und fj, so gelangt man zu den Gleichungen 

tod —tc—b? e+ b 
e ee et PS eee See t 

(3) | 2 (é =c) P| aC s\= BOS oF) 

twa tc — b? on ; 

DC ee) i t cal Lee $6 PO 

Setzt man 
yt + py i at + By 

Fif)= #462? Fy (t)= #2462 ? 

so ergeben die Gleichungen (3) folgende Werte fiir a und 6 
eae ears 

ee ene ey he 

also 
twa? t—c —twa? t+c 

(4) EN) woe i +02” Ea) =——9— P+ be 

Dann ergibt sich aus (2) fiir die Ableitungen /' (f) und f, (é) 

AC _ toa? 3c + b?(2t +0) | Aes twa 3ct* + b?(c — 2t) 

1 2 (t2 + b2)2 > Y= 2 (+0)? ? 

also durch Integration 

twa?! c t ct+0? 1wa* | C t ct — 6? aS) de ras : Lek Ga pas Ce ee eee 
b) k= 2 4 are tg eat a5 [2-5 are te > Sie 

Wir erhalten daher fiir die Stromfunktion nach Hinzufiigung einer 
geeigneten Konstanten 

(Cat See z—-td Zz+id _ warid | t F 
: arc tg — — ar Sem gy are 8% x 

Wenn wir wieder gewdhnliche Koordinaten einfiihren und vom tri- 
gonometrischen tg zum hyperbolischen Yq tibergehen, entsprechend der 
Beziehung 

varctgia = —UrTqa, 
so ergibt sich 

2 l 2yb yy? = 68) 4 0? — Zu b%) 6a P= 5 ay 2 2 “ 
(6a) va® vig S524 B2 Yr? +62 + Qyd) (r2 +0 — 2yb) | 



§ 58. Langsame Rotation eines Zylinders in der Niihe einer ebenen Wand. 217 

Fuhrt man die Koordinaten =, y= y—d ein in bezug auf ein in den 
Punkt M parallel verschobenes System und setzt €2-++ 4? = 02, so hat man 

‘ id 2b (7 + d) 20?d+7(@ + 0?) 6b) P=wa2| = 
(6b) eal Ur Tg 0? —a*+2d(n+d) 2(n4 ee a?) + 4(d +7) (do? + 7a) 

Wenn 9=a wird, so kommt 

(7) CP) wa? ts Wr oe —1]= const. 

Man sieht also, daf der Kreis um M mit dem Radius a in der Strom- 

linienschar enthalten ist. Die Stromlinie Y—0O zerfallt in die w-Achse 

(Wandlinie) y=0 und in eine singulire Stromlinie, die den Grundkreis um- 

schlieBt und die 2-Achse bertihrt. Wir haben das Strombild fiir den Fall 

a dadurch konstruiert, daf wir zunachst die Y-Werte fiir kon- 

stante y in Abhangigkeit von 7 zur Darstellung gebracht und dann die den 

aquidistanten Parallelen zur r-Achse entsprechenden Schnittwerte auf die 

ay-Ebene tibertragen haben (Abb. 80). Man erkennt deutlich den Verlauf 

der Flissigkeitsbewegung; insbesondere sieht man, dafi die geschlossene 

Stromlinie Y=0 das gesamte Feld in zwei Gebiete teilt, das innere 

Feld der eigentlichen zirkulatorischen Bewegung um den Zylinder und 

das Feld der AuBeren verhaltnismaBig schwachen Stromung, in dem die 

Stromlinien nach beiden Seiten ins Unendliche gehen. 

YELL 

Abb. 80. Strombild in der Umgebung eines Kreiszylinders, der in der Nahe 

einer ebenen Wand rotiert. (Nach Frazer.) 
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Aus dem Ausdruck (7) erhalten wir tibrigens unmittelbar als mitt- 

lere Geschwindigkeit der zirkulierenden Fliissigkeitsschicht oder des 

Durchflusses durch den Spalt zwischen Zylinder und Wand 

Vi = pal} a Wr Tq a 

Zur Bestitigung der Grenzwerte und fiir spiteren Bedarf bestimmen 

wir noch die Komponenten der Feldgeschwindigkeit in der Richtung 

des Kreisradius und der dazu senkrechten Richtung. Durch eine ein- 

fache, wenn auch etwas umstindliche Rechnung ergibt sich 

4wa?(7 +d) psig oI 7 SOS 2_ ,2\2 

US Format ed (ye dy Ody mS ee oe (chest 
—2docos?p(o2 — a2)? + 4 0b2(0?—a?)(d+ 7) +4a?0(n+d)*], 

__ 4wa? cos ep (7 + d) (9? — a*)?[2d7y +07 + a?) 

e ia [(e? — a2)? +4 (7 + d) (an + Fd)? 

(8) 

Setzen wir 9 =a, so erhalten wir voraussetzungsgemaB (vy) .—-, = Wa 

fiir die Umfangsgeschwindigkeit, wihrend beide Komponenten fir 

y=x7+d=0 verschwinden. 

Zur Berechnung der auf den Kreiszylinder wirkenden Flissigkeits- 

krafte bediirfen wir zunichst des Ausdrucks fiir den Normaldruck, der 

unmittelbar der friiher gegebenen allgemeinen Formel zu entnehmen ist 

p= 4u[F, (2) + F,@]. 
Wenn wir die Werte fiir die Funktionen F, und F, einsetzen, so 

kommt ae ie yetes 
be aj. @ (z~—% _@ (2+ ‘ 

p=2uwa C qs | ia | ) 248 F4B 
Die beiden in der Klammer stehenden Ausdriicke sind konjugiert 

komplex. Setzen wir daher 

ad (z—1d" 

al Fah) AtSB, 
so wird 

p=—4uwa?-B 

oder, wie eine einfache Rechnung ergibt, 

(10) p= S8peea? = iy ae mila Joe Use a= 2s] ; 
2 — yy? + O2)2 + dat y2]2 

In ahnlicher Weise liBt sich iibrigens der Ausdruck fiir die Wirbel- 
stirke w in einem beliebigen Feldpunkt bestimmen, und es verdient 
bemerkt zu werden, das die Linien gleichen Druckes und gleicher Wirbel- 
stiirke ein System orthogonaler Potentiallinien darstellen, was beson- 
ders fiir das zugeordnete elastische Problem von Bedeutung ist, wie 
ich an anderer Stelle darlegen werde. 
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Hier interessiert uns vor allem der Druckverlauf lings des Kreises 
@=4, fiir den wir abgesehen von einer additiven Konstanten folgende 
Darstellung gewinnen: 

(11) p= 2uwa ee Ear) a an . 

Man sieht, dafi der Druck in den Schnittpunkten des Kreises mit 

den Achsen £,7 verschwindet, im ersten und vierten Quadranten posi- 

tive, im zweiten und dritten Quadranten negative Werte annimmt, ferner 

den grOBten positiven Wert im dritten und den gréRten negativen Wert 

im zweiten Quadranten erreicht. 

Die tangentiale Reibungsspannung lings des Kreises berechnen wir 

aus den Geschwindigkeitskomponenten (8) und (9). Bilden wir ferner 

das Geschwindigkeitsgefaille in der radialen Richtung und setzen dann 

0 =4@, so ergibt sich 

0% 2a? cos® Ove 

(12) eal =i) ae f ua (d+a aoe ) (5 ; ) Ce : 

Der erste Ausdruck zeigt, daB das Gefille der zirkularen Geschwindig- 

keit im Punkte 9 = - ein absolutes und im Punkte m= — 5 ein rela- 

tives Minimum besitzt, wihrend es in den zur y-Achse symmetrisch 
a 7 

Wir erhalten ferner nach § 8, (4) als Reibungsspannung am Zylinder 

gelegenen Punkten sing = —-, den absolut groBten Wert annimmt. 

el. 0 Vp V_p _ 9 a* cos’ . Be ge ce PHO Ea acing) 
Mit Hilfe der Ausdriicke (10) und (13) kénnen wir nun die resul- 

tierende, auf den Zylinder wirkende Kraft und das widerstehende Rei- 

bungsmoment berechnen. Die Form der Ausdriicke fiir p und t 1aBt 

zunichst erkennen, da die senkrecht zur Wand gerichtete Komponente 

P, der resultierenden Kraft verschwindet. Fiir die vom Druck her- 

riihrende Komponente parallel zur Wand haben wir 
27 27 

: 3 [ Singeoos*pdgp | 
Pp = — a| peospdg = — 24a" | decceaa: 

0 0 

Die Schubkrafte dagegen liefern 
27 

i a? cos* p : 
P= 2uaw | 2 + drainage Sing ay : 

0 

Benutzt man die Integralformeln 

2x 2a 
ay | SE ey ils | Ee aaa eos 

(d + asin qp)* a*b (d + asing) a 

0 
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so kommt Ae 

— f)\t — 

(15) Pp = 4200 ea, P,= —47 uw ae 

und daher 

(16) P=Pp-+- PP, = 0% 

Wir erhalten also das bemerkenswerte Resultat, daB Druck und 

Schub entgegengesetzt gleiche Kriafte erzeugen, oder daB die 

Flissigkeit keine bewegende Kraft auf den Kreiszylinder 

ausibt. 

Wohl aber entsteht ein Reibungsmoment, das natiirlich nur von 

den Tangentialspannungen herriihrt. Wir erhalten namlich nach (18) 

mit Benutzung der Integralformel (14) den Ausdruck 

(17) Ail a® | tdy =40uUwa? f + | = 47 Uwa?- ee 

In der unendlich ausgedehnten Fliissigkeit erfahrt der Zylinder, wie 

p 

wir friiher gezeigt haben, das Reibungsmoment 

Myo =42uw-a?. 

In der Tat geht der Ausdruck (17) in M/, tiber, wenn das Verhalt- 

nis < =A=0 wird oder die Wand ins Unendliche riickt. Wie von 

vornherein zu erwarten war, hat also die Nahe der Wand eine 

VergréBerung des widerstehenden Momentes zur Folge, und 

zwar erhalten wir als zusitzliches, von der Wand herriihrendes Moment 

d—b 
My = 42 uwa?— "ek 

Im Grenzfall, wo der Zylinder die Wand beriihrt, wird das Moment 

unendlich groB. Diese Resultate sind natiirlich nur unter der Vor- 

aussetzung giiltig, dal die Drehgeschwindigkeit klein ist. 

$59. Rotation von Kugeln um einen Durchmesser. 

Als eine weitere Anwendung der allgemeinen Gleichungen fiir das 
Drehfeld in der Umgebung eines Rotationskérpers betrachten wir zu- 
nachst den Fall, dafS die Funktion Y nur von dem Radiusvektor r— 
SR eA Borers mnleled indiekei Ja+y?+2? abhingt. Das wiirde der bei kleinen Geschwindigkeiten zu- 

lassigen Annahme entsprechen, daB eine zur rotierenden Kugel konzen- 
trische Flissigkeitsschale sich wie ein starrer Kérper bewegt. 

Aus den allgemeinen Formeln fiir sphirische Polarkoordinaten er- 
gibt sich dann die Gleichung 

1 Ole or 2 0¢ 1 0 
] pie) —— ae be a .: ; 

(1) r Or? (r‘P) Or? Yr or y Ot oa 
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Wenn man av wy 

Or sind 

setzt, so erhalt man aus (1) fiir v die Gleichung 

(2) oO? v' 2 ov’ a Pa BIG S! 

Ort FOr Gt on OF? 

l Of 

r Or 
ferner fiir die Winkelgeschwindigkeit o=— = 

Ow 4 0wW 1 Ow 

(3) Or? ' r Or v Ot 

_Im stationairen Falle ergibt sich aus (1) das allgemeine Integral 

(4) P=ArP +240 

und daraus die Drehgeschwindigkeit einer Fliissigkeitsschale zu 

(5) w= —2A+ a 

_ Wenn die Grenzen der Fliissigkeit durch zwei konzentrische Kugeln 

mit den Radien 7; und 7, gegeben sind, deren eine mit der Geschwindig- 

keit @, rotiert, wahrend die gréBere Kugel fest ist, so hat man 

if Oia 
2A =n 45a) BO ae ae 

1 1 1 1 

Y Taal aa) 
Wenn die aiuBere Kugel sich mit der Geschwindigkeit w, dreht, so 

wird ; ; 
1 1 

(6a) w= wrl,5 He a) 

Fiir das elementare Reibungsmoment erhalten wir im ersten Falle 

nach der allgemeinen Formel (§ 54, (7)) 

dM =27ur ane sin? dds 

= 2 urs (Fe, peed), 

woraus 

(7) M=~ 70 Lert (= = 810104 gaa 

Bei einem Kugellager mit geringem Zwischenraum rz—r=0 wird 

re—ricsrio, 
also re! 

2A=01 5%, Bs (4 

(7a) M=-—8 7 zy? 
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Wenn man @, durch @» ersetzt, so erhilt man das Reibungsmoment 

fiir den weiteren Fall, daB die 4uBere Kugel mit der Geschwindigkeit >» 

rotiert, wahrend die innere in Ruhe ist. 

2. Auch dieses System konzentrischer Kugeln kann man zur Bestim- 

mung des Reibungskoeffizienten benutzen. Die innere Kugel, die als 

Hohlkugel mit geringem Gewicht ausgebildet sei, hange an einem Faden, 

der mit einer Spiegelvorrichtung zur Ablesung der Amplituden verbun- 

den sei, wiahrend die auBere schwere Kugel in Umdrehung versetzt 

werden mége. Wenn C die Torsionskonstante des Fadens und @ die 

Amplitude der Drehung bedeutet, so hat man 

M=C> Pp. 

Wenn man durch einen besonderen Versuch die Schwingungsdauer 7’ 

und das Tragheitsmoment J des schwingungsfahigen Systems (innere 

Kugel-+ Faden) bestimmt hat, so wird 

47n2J 
on = [2 ff - 

Erhalt die innere Kugel durch die rotatorische Bewegung der Fliissig- 

keit einen Ausschlag w, so kann man das entsprechende Torsionsmoment 

dem Reibungsmoment gleichsetzen; man erhalt dann, wenn man noch die 
9 “7U se a : an re . . 

Umdrehungsdauer t =~— der auBeren Kugel einfihrt, fiir die Reibungs- 
ca 

zahl den Ausdruck 

(8) le 
JT 1 1 

~ 47? Pla al 

Bei den Versuchen von Zemplen waren die Radien der Kugeln 

m=5, r2=5,6cem. Das Gewicht der inneren Kugel betrug 300 g, die 

Umdrehungszeiten der iuferen Kugel 50—300 s. Dann ergab sich z. B. 

fiir trockene Luft bei 18° der Koeffizient 

t= 1,9114-10-4gscem-?. 

Wie man die Schwingungen einer Kugel in einer Fliissigkeit zur Be- 
stimmung der inneren Reibung benutzt, wird in einem spiteren Ab- 
schnitt dargelegt werden. 

§ 60. Langsame Rotation des Ellipsoids und der Kreisscheibe. 

1. Die Darstellung fiir das stationaire Drehfeld in der Umgebung eines 
Rotationsellipsoids gewinnt man am einfachsten aus den bekannten Aus- 
driicken fiir das Newtonsche Potential!). Bekanntlich hat ein mit 

') Vel. G. Kirchhoff, Vorlesungen iiber mathem. Physik, I. Leipzig 1876, 
S. 378 (26. Vorlesung). 
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Masse von der Raumdichte 1 erfiilltes Ellipsoid mit den Achsen Gi, OW & 

in einem auBeren Punkt 2, y, z das Potential 

a f oe y? a dh, 

(1) ®=nabel(\— 55 — ea aa) 
i [(a? + A) (0? + A) (c? + A)] 

wenn A den Parameter des durch den Punkt P gelegten konfokalen 

Ellipsoids, also die positive reelle Wurzel der Gleichung 

x 4 oF Ka 22 

GPa SE GA 
1 

bedeutet. Die Kraft ist dann dargestellt durch die Ableitungen 

” r di 
(2) eS = 2mxabe | : ; usw. 

1 (@+AM[(@+ (+A (C+D? 

Ist das Ellipsoid ein Rotationsellipsoid, also etwa a=b, so wird 

foe) 

ee eae ee 

(la) re al BETIS OES di. 

(a*+A))c2+A 

das Potential in einem Punkt des konfokalen Ellipsoids 

r2 gt 

=== || 
Gen ca) 

Daraus folgt dann 
Cc 

D ‘ ad). 
g SS ee @r | (@tapyera 

/c+h Tf real hee as 
(2a) 2Qna2cr yea e| ae ee |e 

— @—c | a+a Va? —c? 

P : : ; 
Setzen wir yan, also x rae , so ergibt sich mit 

o 0/eb 100, &® 

STO eo ee = 
fiir die Funktion 7 

OU aa Obie ok Jy 
(3) gs daa RT ae 

d. h. also die stationire Differentialgleichung der Winkelgeschwindigkeit. 

Wir kénnen daher setzen 

1 0® Viti ves 
pase! Salya —¢ Fons +aretg|/ = 
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Wenn die Bewegung im Unendlichen verschwindet und auf dem 

Ellipsoid (A=0) m=, wird, so erhalt man 

2| V2 aM! 7 sare t pas) 

(4) (= 41 5 
Ss eee oe. AG 

cya?—c* — a?|—> — are sin— 
2 a) 

Das zur Erhaltung der Bewegung notwendige Moment berechnet sich 

auf Grund der Bemerkung, daB das Reibungsmoment wegen der statio- 

niren Bewegung einen vom Parameter A unabhingigen Wert besitzt, 

d.h. auf allen konfokalen Flachen gleich ist, im besonderen also fir 

A> oo oder fiir die unendlich groBe Kugel 

r? +2? =A 

ermittelt werden kann. Fir groBe A haben wir aber 

(oo) 

= 2 2 

i 

a? | (a? — c?)3 29-3 
(= Gh ——= 

Ber 2 a| 78 : 
cat — ot — a*{ — are sin 

— 

a 

also auf Grund des Ausdruckes fiir MW bei der Kugel 

16 . a) (a? —c2)3 
(5) M == 0 uw, ————— ee ——« 

3 a as. 9 ss ., c 

cja—c— a*| —— are sin al 
2 a 

Setzt man c=n-a und bestimmt den Grenzwert des Moments fiir 

n=1 (a=c), so erhalt man wieder M=—82@ a. 

Wenn die Flissigkeit von zwei Ellipsoiden eingeschlossen ist, von 

denen das eine (A=0) sich mit der Geschwindigkeit w, dreht, wahrend 

das zweite (A=a) in Ruhe ist, so kann man, wenn man den Koeffizienten 
von @, in (4) #(A) nennt, fiir @ den Ansatz machen 

w=A+B- F(A); 

alsdann erhalt man mit Einsetzung der Grenzwerte 

ae wy FB (e) Se Wy 

A= VS Raye B 1-F(«)’ 
also 

F(’) — F(«) 
6 1) 4 —__. =e ( ) (0 (Oy Za F(a) 

2. Scheibe als Grenzfall des Ellipsoids. Die gegebenen For- 
meln gestatten gleichzeitig den Grenzfall einer langsam rotierenden Kreis- 
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scheibe mit dem Radius a zu ermitteln. Man braucht nur in der Formel (4) 
c=0 zu setzen. Dann wird 

= 3 (72 + 22 — gq? 4 Vr = 7 2) Ai Apre® 
> 

ferner werden die Winkelgeschwindigkeit und das Reibungsmoment 

2Qaya 2 Jn 
(7) dU = Wy | — Seedy aC tg sf 

(8) M = —uwra’. 

Wenn die Scheibe in einem feststehenden GefaB rotiert, das die Gestalt 

eines konfokalen Ellipsoids hat, so erhalt man 

al ws + are tg! a 

(9) Ww = WwW, |1— eas oes 
a) c la 

Prwarelels re 

3. Scheibe. zwischen zwei parallelen Ebenen. Dieser Fall 

laBt sich nicht mathematisch exakt behandeln. Wenn wir zunichst 

annehmen, da die Scheibe unendlich ausgedehnt und die Fliissigkeit 

auBerdem von einer in der Nahe befindlichen festen Ebene z= —/ begrenzt 

ist, so koOnnen wir naherungsweise setzen 

ys & 2 eth) (10)  — ly 

und haben dann fiir das elementare, auf die untere Scheibenflache 

bezogene Reibungsmoment 

(11) dM =210" dr. 

Wir kénnen nun in erster Naherung annehmen, dai die Bewegung 

und die Reibung bis zum Rand einer Scheibe vom Radius a durch die 

Gleichungen (10) und (11) charakterisiert werden. Dann erhalt man bis 

zum Rand fiir jede Seite der Scheibe 

mum at 

(12) Le oe 

In der Nahe des freien Randes haben nun aber die Flachen gleicher 

Winkelgeschwindigkeit eine gegentiber dem Fall der unbegrenzten Scheibe 

stark abweichende Gestalt; indem sie mit starker Kriimmung den Rand 

einhiillen, drangen sie sich gleichzeitig stark zusammen, wodurch eine 

wesentliche VergréBerung der Gesamtreibung sich ergibt. Wenn der 

Durchmesser 2a der Scheibe groB ist gegeniitber der Dicke, so wird sich 

das Gebiet der Stérungsbewegung nur bis zu einem mit / vergleich- 

baren Abstand erstrecken. Die Stérung hat alsdann angenaihert den- 

selben Charakter wie am geradlinigen Rand einer ebenen Lamelle, die 

Miiller, Theorie der zihen Fliissigkeiten. 15 
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sich in ihrer Ebene mit der translatorischen Geschwindigkeit wa bewegt, 

d.h. wir kénnen die geradlinigen Spuren der drei Ebenen in einem 

Meridianschnitt als zylindrische Schnittlinien auffassen und den Kreis- 

rand der Scheibe durch einen geraden Rand einer rechteckigen, unend- 

lich langen, ebenen Lamelle ersetzen, die sich senkrecht zur Schnittebene 

bewegt. Die Frage ist damit auf ein friiher behandeltes Problem zurtick- 

gefiihrt (§ 16). Es ergab sich damals, daB die VergréBerung der Reibung 

infolge des Randeinflusses Aquivalent ist einer Verlangerung der bewegten 

Ebene. Sei diese Verlangerung /,, so ergibt sich das zusatzliche Moment zu 

a] 
(13) M,=27 0 —. 

Wenn man 7, nach dem friiher angegebenen Verfahren bestimmt, so 

wird aber das Korrekturglied fiir das Reibungsmoment zu grok, weil 

der Umfang eines inneren, aus der Scheibe ausgeschnittenen Ringes 

2a(a—x), langs dessen die Reibung wirkt, kleiner ist, als der Umfang 

22a am Rand, und weil auBerdem der Hebelarm der Kraft sich in dem- 

selben Mae verkleinert. Mit Riicksicht darauf kann man den Ausdruck 

fiir das zusatzliche Moment durch 

M,=2nuw (Cavin 

(13a) 

=¥,(1—*3_...}, 
‘ a t 

ersetzen, der den kreissymmetrischen Verhaltnissen besser entspricht?). 

Da wir spater bei der Behandlung der Drehschwingungen eines bewegten 

Zylinders die Korrektur infolge des Randeinflusses von einem anderen 

Gesichtspunkt behandeln werden, wollen wir an dieser Stelle von weiteren 

Einzelheiten absehen. 

$61. Die genaue Rechnung fiir die rotierende Scheibe 
(nach v. Karman). 

1. Bei der bisherigen Betrachtung des Bewegungszustandes einer zAhen 
Fliissigkeit in der Umgebung eines Rotationskérpers, der eine gleichmaBige 
Drehung ausfithrt, haben wir vorausgesetzt, daB die Fliissigkeitsteilchen 
sich in Kreisen senkrecht zur Drehachse bewegen. Das bedeutet also, 
dafs um einen rotierenden Kreiszylinder eine koaxiale zylindrische Fliissig- 
keitsschicht, desgleichen um ein Ellipsoid eine von konfokalen Ellipsen 
begrenzte Schicht wie starre Gebilde um die Achse rotieren. Dieses 
Resultat kommt dadurch zustande, dai wir die Zusatzbeschleunigungen 

1) Vel. Brillouin, a.a. 0. S. 92ff 
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bzw. Zusatzkrafte bei der Rotation, also insbesondere die Zentrifugalkraft, 
vernachlassigt haben. In Wirklichkeit steht die Fliissigkeit in der Nahe 
der Wand, die ihr infolge des Haftens eine Drehbewegung erteilt, unter 
der Wirkung der radialen Tragheitskraft, die einen sténdigen Abstrom 

nach aufen zur Folge hat, wihrend gleichzeitig infolge der Kontinuitat 

ein axialer Zustrom die abgehende Menge ersetzt. Um die Bewegung 

darzustellen, ist es erforderlich, von den allgemeinen, auf Zylinderkoor- 

dinaten transformierten Gleichungen (§ 8) auszugehen, in denen alle Ge- 

schwindigkeiten als vom Azimut m unabhingig vorauszusetzen sind. Diese 

Gleichungen lassen sich nun fiir den Fall einer rotierenden (unendlich 

groBen) Scheibe ohne Vernachlassigung integrieren. Indem wir im 

wesentlichen der Darstellung v. Karmans folgen, werden wir gleich- 

zeitig Gelegenheit haben, den Zusammenhang mit der Prandtlschen 

Grenzschichttheorie wieder aufzunehmen. Wir machen mit v. Karman 

den Ansatz 

(1) tr=rF(zZ), vg=rG), vw=He), p=ple). 

Dann erhalten wir fiir die Funktionen F, G, H die gewéhnlichen 

simultanen Differentialgleichungen 

dF da? F dG @ag 
(2) Hae a Ly a Oy 5 Dig He aera) 

dH dH dp, @H 
ea eee dae 8 dee ae 

mit den Randbedingungen 

F(0)=0, F(oo) = 0, 
G(0) = 0, G(oo) = 0, 

H(0)=0 

Um dimensionslose GréBen zu erhalten, setzen wir 

,/w F G H 

f=2)-, ag PONS Lats 

Dann gehen die Gleichungen (2) tiber in 

df @f dg @g dh | oy OV eee eee Pe ges ae 71° 
mit den Bedingungen 

(= One leh=Ontures 0; j= g—0 fur E>OO. 

Die Cienen konnen durch das von K. Pohlhausen ausgefihrte 

Naherungsverfahren integriert werden. Nehmen wir an, daB f und g in 

der Entfernung 6 von der Wand, d.h. im Abstand der Grenzschichtdicke, 

15* 
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die konstant ist, sich bereits wenig von Null unterscheiden, und inte- 

grieren wir (2a) zwischen €=0 und = 5| = =&), so ergibt sich 

fir ona + [athe [ith 
0 0 

50 

[risas+ [aet= [ie] 
0 0 

und durch partielle Integration mit Berticksichtigung der Beziehung 
dh 2 

Rae ee | | 
‘ 4 mY ve ay Rea! df E> ru = dg =p 

a) 3 [ras foras——Iae], 4 | tod =— [ae 
0 0 0 

Fiir f und g kénnen wir mit t =, die Naherungswerte setzen 

(5) f=(1—A)? [ad + 2ad?—Fd?], g=F(2+A)(1—A), 

die die Bedingungen erfiillen 

f=0, g=l fir f=0, f=sb=0, g= = =O firs eae 

Daraus ergibt sich dann durch Integration 

(6) k= —2/fdS= —2542ha—124 126 —4a) + Ga—J)A5). 

Fiir die Integrale in (4) erhalt man 

| {pag = £ [0,0301 a? — 0,00326a + 0,00159] 
0 

(4a) - ; 

| fords = 0,235750; ligas = £ [0,0607a — 0,00567]. 
0 0 

Setzen wir diese Ausdriicke in (4) ein, so ergeben sich zwei Glei- 

chungen fiir a und &, mit der Auflésung 

a=1,026, &—2,58. 

Daraus berechnet sich z. B. die Grenzschichtdicke und die axiale Zu- 
stromgeschwindigkeit zu 

(7) C= So|/ —_ 2,58 a a: e 

(8) (Vz) co — Jo y i Qfdk = = = Vrw h (9) = re co( SS 0,708 rw . 

0 
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Bei der Drehzahl n= 600/min, w= 62,8 s~1 und y=0,14 cm? s—! (Luft) 
findet man _ beispielsweise 

0=0,122cm, (v2)5= — 7,6cm/sec. 

Die Stroémung ih der Nahe der Scheibe hat etwa den in der Abb. 81 

gezeichneten Verlauf. Hier ist das System der Stromlinien in zwei An- 

sichten, in einer zur Scheibe parallelen Ebene und in einer Meridianebene 

dargestellt; im ersten Falle ist von der z-Komponente der Bewegung 

»- Die 
Projektionen der Stromlinien auf die Ebene z=const sind logarithmische 

abgesehen, im zweiten Falle von der tangentialen Komponente v 

VU, . . 

’, also der Winkel zwi- 
Uy 

Spiralen, da das Verhaltnis der Komponenten 

schen Tangente und Radiusvektor, 

konstant ist. Die Meridianstrémung 

ist im Unendlichen bzw. am Ende der 

Grenzschicht eine auf die Scheibe ge- 

richtete Parallelstromung, die in der , iN 

Nahe der Scheibe in der Richtung der 

Scheibenradien umgelenkt wird. Im 

ersten Falle haben wir 

dp dr 
Poe == (Gry Ai == pI, 

d F a Vis G ¢ Aan = (9) ae @? r=ce : 

Im zweiten Falle haben wir fiir die 

Stromfunktion 

104, Lov 
ommee Coma ag 

By ue sp icany Oey 
daher dz Abb. 81. Stromlinien in der Um- 

, ; gebung einer rotierenden Scheibe. 
(9a) ae = 7 H@). 

2. Das Widerstandsmoment fiir eine Scheibe vom Radius a laBt sich 

berechnen, wenn man den EinfluB der Randzone, der bei kleinen Ge- 

schwindigkeiten klein ausfallt, unberiicksichtigt laBt. Da das Moment 

nur von der tangentialen Winkelgeschwindigkeit m= G abhangt, so haben 

wir auf Grund der allgemeinen Formel § 54, (7) 

aM =22ur? ie ar, 
‘ dz 

also 
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: dg 3 pte a es Free 
Nun ist (om as (1 — A?); (as an ee 

3 7 ey 2 bat 
also ES args at ov? w? = — 0,92 a*ov? w? 

50 

oder mit Einfiihrung der Umfangsgeschwindigkeit ‘U = am und der 
U 

Reynoldsschen Zahl R=~* 

ta Se ge (10) M=——a SU. 

Fiir eine beiderseits von Fliissigkeit umgebene Scheibe ist dieser Aus- 

druck zu verdoppeln. Das Gesetz fiir das Reibungsmoment weicht also 

von dem friiher fiir kleine Drehgeschwindigkeiten gefundenen ziemlich 

erheblich ab. Das Moment ist der Dichte, der Wurzel aus der 

Zahigkeitszahl und der 3-Potenz der Winkelgeschwindigkeit 

proportional. 

§ 62. Reibungswiderstand einer rotierenden Scheibe im 

turbulenten Fall. 

Da die im letzten Abschnitt abgeleitete Formel fiir das Reibungs- 

moment bei héheren Drehzahlen bzw. Reynoldsschen Zahlen nicht 

mehr zutrifft, vielmehr ein schnelleres Anwachsen des Momentes mit der 

Drehgeschwindigkeit beobachtet. ist, so wird es erforderlich sein, die 

friiher gefundenen Gesetze fiir die turbulente Reibung auf den gegen- 

wartigen Fall anzuwenden und eine angenaiherte Erginzungsrechnung ftir 

die Grenzschicht und den Reibungswiderstand durchzufiihren. Wir 

konnen uns wieder auf die Entwicklungen von vy. Karman?) berufen, in 

denen vom Impulssatz Gebrauch gemacht wird. Wenn wir die Geschwin- 

digkeiten wie frither, ferner die radiale und tangentiale Schubspannung 

mit T,,.=T, und T,,—=T, bezeichnen und den Impulssatz auf das zwischen 

den Zylinderflachen mit den Radien r und r+ dr hegende Volumenelement 

mit dem Offnungswinkel y=1 und der Héhe 6 anwenden, so erhalten 

wir in radialer Richtung 

n) a) 

(1) tiny | vd: —o | vidz= —rty 
z ae 

und als Momentengleichung in tangentialer Richtung 

F) d ¢ 
(2) 2197 (pe | noydal = — 209 Ty. 

0 

1) Th. v. Karman, Z.a.M.M. Bd. 1 (1921), 8. 245—250. 
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Fiihren wir jetzt das Gesetz fiir die Geschwindigkeitsverteilung ein 

z 

He 

fn) ny) fi) 

(4) | vedz=0,207v¢6, | Ur Vp dz2=0,0681ravd, | v¢dz=0,0278r2w20. 
0 0 0 

4 
7 

? 
(3) Ur = Vo | “J'( = “ 5 Up =r 

so erhalten wir 

Wenn wir ferner die Geschwindigkeitskomponenten an der Wand zu- 

Sammensetzen und fiir die resultierende Geschwindigkeit den friiher (§ 21, 

(8)) eingefiihrten Reibungsansatz anwenden, so ist zu setzen 

(5) r= 0.022567" (1 ae ry = 0,0225¢ (ren (%) ea 
wt 0) rw} 

\ 

Damit erhalten wir aus (1) und (2) 
al 3 

d ; - va\e ra\?]8 +, (0.20702 7d} — 0,0278r? wd = — 0,02255r(-5| jr +( \" % 
d + 9 

»- ¢ V 4 Uo PA 

“7p 10,0681 r° WV 0| = 0,02257402(" 5 | 1 | | 

Die Gleichungen werden durch den Ansatz befriedigt 

(6) Vo =a“rw, 6= pr’. 

Die daraus fiir a und f resultierenden Gleichungen liefern 

mithin ‘ 

(7) d= 0,5227(— ) 

Das Widerstandsmoment la8t sich aus dem Drehimpuls berechnen, 

der in der Zeiteinheit an der Zylinderfliche z= 06, r=a austritt. Es wird 

: 1 
re Vv ? 

MTG 0 [ wrvpde = 0,0364.a° wv? 9 =| ‘ 

0 

Bei Beriicksichtigung der doppelseitigen Reibung erhalten wir 

oder mit Einfiihrung der Umfangsgeschwindigkeit 

u 

(8a) Vie 0,146, ura'(z_| ’ 

(9) Ca O.146 30. 
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Das Reibungsmoment ist also nach dieser Rechnung der 

-Potenz der Umfangsgeschwindigkeit, der Widerstands- 

beiwert der fiinften Wurzel aus dem reziproken Wert der 

Reynoldsschen Zahl proportional. 

Die Abb. 82, die der Arbeit von G. Kempf?) entnommen ist, ent- 

halt die Darstellung der laminaren und der turbulenten Widerstandsziffer 

sowie verschiedene Versuchswerte von G. Kempf und W. Schmidt, die 

0015 

001 

LEE See VG 1-10 2 490% & 3 1-198 

Abb. 82. Widerstand einer rotierenden Scheibe. 

sich damit in guter Ubereinstimmung befinden. Der Schnitt beider 

Kurven ergibt sich durch Gleichsetzung der entsprechenden Beiwerte 

3,68 Pe 
(Cw): = —=— = (Cy); = 0,146 —, 

VR )R 
woraus ; 

R ow 4,7-104 

folgt. Man sieht in der Tat, daB die auf kleinere Reynoldssche Zahlen 
sich beziehenden Werte gerade in das Ubergangsgebiet zwischen Laminar- 
und turbulenter Strémung fallen. 

) G. Kempf, Reibungswiderstand rotierender Scheiben. Vortrige aus dem 
Gebiete der Hydro- und Aerodynamik, Berlin 1924, S. 168. 
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§ 63. Die wirkliche Strémung in der Umgebung rotierender 
Korper. 

Die Grundformeln der vorigen Abschnitte sind unter besonderen 
vereinfachenden Annahmen abgeleitet worden. Haben wir zunichst die 
Drehgeschwindigkeit, insbesondere beim Kreiszylinder und der Kugel, 
als klein vorausgesetzt und daher die Tragheitsglieder vernachlissigt, so 

ist auch der genauere laminare Strémungsverlauf in der Umgebung einer 

Scheibe unter der Voraussetzung bestimmt worden, daf der Radius der 

Scheibe unendlich groB und das Flissigkeitsgebiet wie in den vorigen 

Fallen nach auBen unbegrenzt ist. Wenn die Scheibe und die Flissigkeit 

begrenzt sind, so haben die auf die Meridianebene projizierten Strom- 

linien, wie der Versuch ergibt, einen geschlossenen Verlauf, so daB sich 

auf beiden Seiten der Scheibe zwei entgegengesetzt drehende Wirbelringe 

herausbilden, deren Hauptebenen der Scheibe parallel sind. Beriicksich- 

tigt man die tangentiale Komponente der Geschwindigkeit, so sieht man, 

daB die Stromlinien im ganzen raumliche Spiralen darstellen. Das Strom- 

liniensystem andert sich natiirlich nicht wesentlich, wenn die Scheibe 

eine merkliche Dicke hat. Der daraus durch weitere VergréBerung der 

Dicke (Héhe) zu gewinnende Fall des in einer begrenzten Flissigkeit 

rotierenden begrenzten Kreiszylinders besitzt im Hinblick auf die prak- 

tische Verwendung als Rotor besonderes Interesse. Die Strémungs- 

verhaltnisse werden in erster Linie durch die rotierende Mantelflache 

des Zylinders bestimmt, die das Feld in der Umgebung der Endflachen 

wesentlich beeintrachtigt. Was die entsprechenden Versuche angeht, so 

erwahnen wir die alteren Arbeiten von Freund!), die sich auf einen in 

Luft mit einigen Umdrehungen in der Sekunde um seine vertikale Achse 

rotierenden Zylinder von 160 cm Héhe und 50 cm Durchmesser bezichen. 

Zur Messung der Geschwindigkeiten wurde ein kleiner Papierschirm 

am Ende eines Hebels benutzt, der in der Mitte an einem kleinen, 

diinnen, gespannten Metallfaden befestigt ist. Durch eine besondere Vor- 

richtung konnte das Gestell, das den Faden tragt, verstellt und damit 

auch der Papierschirm an verschiedene Stellen des Drehfeldes gebracht 

werden. Das Wesen des Apparates besteht darin, daB die Kraft des 

Luftstromes durch das Torsionsmoment des Fadens aufgehoben wird, 

wobei man annehmen kann, daB die Torsion dem Quadrat der Kompo- 

nente der Stromgeschwindigkeit normal zur Papierflache proportional ist. 

Es zeigt sich, da der Ort gleicher Geschwindigkeit in der Meridianebene 

keine Parallele zur Zylinderachse, sondern eine gekriimmte Kurve ist, 

1) Vgl. H. Bouasse, Hydrodynamique générale, Paris 1928, 8. 221. 
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die sich an beiden Enden dem Zylinder nahert und in der Mitte den 

groBten Abstand hat. Nur in der aquatorialen Mittelebene senkrecht 

zur Achse befolgt die Stromungsgeschwindigkeit mit groBer Annaiherung 

das von der Theorie gelieferte Gesetz, wahrend auferhalb dieser Ebene 

der Einflu8 der beiden Endflichen das Stromfeld stark veraindert. Spater 

hat Ahlborn (Hamburg) bei Verwendung gréferer Drehgeschwindig- 

keiten die Verhaltnisse dadurch noch weiter geklart, da er photo- 

graphische Aufnahmen in der Umgebung eines im Wasser rotierenden 

ees 

© 

Abb. 83. Stromung in der Umgebung eines rotierenden Zylinders. 

(Nach Ahlborn.) 

Zylinders hergestellt hat). Das auf diese Weise gewonnene Bild entspricht 

etwa der Abb. 83. Die Bewegung der Fliissigkeit ist im wesentlichen 

wieder durch zwei entgegengesetzte, symmetrisch zur Mittelebene auf- 
tretende ,,Passatzirkulationen** bzw. spiralige Wirbelwalzen charakteri- 
siert, die dadurch zustande kommen, da in den Reibungsschichten ein 
gegen das &quatoriale Minimum gerichtetes Druckgefille entsteht, dem 
gleichzeitig eine gegen die Symmetrieebene gerichtete Strémung folgen 
muB. Zur Steigerung des Magnus-Effektes hat man einer Anregung 
von L. Prandtl zufolge den im Windstrom rotierenden Zylinder mit 

*) Fr. Ahlborn, Der Magnuseffekt in der Theorie u. Wirklichkeit, Z. f. M. 
1929, S. 642—651. ‘ 
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Endscheiben von doppeltem Durchmesser versehen. Die Versuche von 
Ahlborn scheinen zu beweisen, daB diese Wirkung in erster Linie auf 
die Reibung der Fliissigkeit an den mit griBerer Umfangsgeschwindigkeit 
rotierenden Scheiben zuriickzufiihren ist. Das Stromfeld zeigt eine we- 
sentliche Veranderung gegeniiber dem eben betrachteten Fall. Wahrend 
an jeder Endscheibe ein Paar starker Passatwirbel entsteht, die den Raum 
um den Zylinder einhiillen, werden die urspriinglichen Zirkulationen des 
Zylindermantels auf einen engen &quatorialen Raum zusammengedriingt 

(Abb. 84). Ahlborn bemerkt, daf$ man durch eine geeignete Verteilung 

Abb. 84. Stroémung in der Umgebung eines rotierenden Zylinders 

mit Endscheiben. (Nach Ahlborn.) 

solcher Scheiben tiber die Lange des Zylinders die Reibung und damit 

die Ursache der Magnus-Kraft ebenso vergréBern kann, wie durch An- 

wendung eines gréBeren Zylinderdurchmessers. 

2. Von besonderem meteorologischen Interesse ist ferner die Kenntnis 

der Strémungsvorgange in der Umgebung einer rotierenden Kugel. Denn 

es zeigt sich, da die auch hier beiderseits der Aquatorebene entstehenden 

Zirkulationen mit den Passatwinden der Erdatmosphire tibereinstimmen. 

Das ist von Ahlborn durch eingehende Versuche in Wasser bestatigt 

worden!). Wenn man statt des Wassers atmospharische Luft ver- 

1) Fr. Ahlborn, Die drei grofen Zirkulationen der Atmosphire, Beitrage 

zur Physik der freien Atmosphire, XI. Bd., Heft 4, 8. 117ff. 
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wenden wollte, so miiBte man nach dem Ahnlichkeitsgesetz die gleichen 

Bewegungsvorgange bei einer etwa 14fachen Umdrehungsgeschwindigkeit 

erhalten, wahrend bei gleicher Geschwindigkeit der Umfang der Zirkula- 

tion betrachtlich abnehmen und die Zirkulationsachsen naher an das Modell 

heranriicken wiirden. Natiirlich kann zwischen den Versuchsvorgangen 

und den atmosphirischen Erscheinungen keine vollkommene mechani- 

sche Ahnlichkeit bestehen, da die Erde nur mit einer verhaltnismabig 

diinnen und nach unten an Dichte zunehmenden Lufthiille umgeben ist, 

Abb. 85. System der Zirkulationen in der Erdatmosphire. 

(Nach Ahlborn.) 

die in den Passaten nur mit einem kleinen Geschwindigkeitsunterschied 

hinter der Erddrehung zuriickbleibt. Ferner treten noch weitere Ab- 

anderungen hinzu, die sich aus thermischen Ursachen herleiten lassen. 

Im ganzen ergibt sich, wie Ahlborn niher begriindet hat, ein System 

von drei atmospharischen Zirkulationen von zunehmender Ausdehnung, 

die primare, etwa bis zum 30. Breitengrad reichende tropische Zirkulation 
der Passate, die sekundire oder gemaBigte Zirkulation iiber den Passaten 
und den mittleren Breiten bis etwa zum 60. Grad und die tertiire oder 
polare Zirkulation, die iiber der zweiten am Aquator beginnt und bis zu 
den Polen reicht (vgl. Abb. 85). Nahere Einzelheiten sind in der er- 
wahnten Arbeit von Ahlborn nachzulesen. 
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ZEHNTES KAPITEL. 

Instationiire Drehbewegungen von Rotationskérpern 
in zihen Fliissigkeiten. 

§ 64. Drehschwingungen einer Kugel um einen Durchmesser. 

1. Wenn wir die bereits frither aufgestellte Differentialgleichung fiir 

die nur vom Radiusvektor r abhingige Stromfunktion der langsamen, 

instationaren Drehung 

(1) 

auf die Form bringen 

(la) Seah = 

02 20 1lo¢ 

Or? r Or vy Ot 
= (), 

so sieht man, da die Lésungen des entsprechenden Problems der gerad- 

linigen Bewegung (§ 27) ohne weiteres verwendet werden kénnen; man 

hat nur v durch r ¥ und z durch r zu ersetzen. So gewinnen wir z. B. 

die beiden partikularen Losungen 

rP, =e cos(di—k’r); 1B, =e -Prsin(at —k'r), 
wobei zwischen k’ und # die Gleichung besteht 

‘Vie 
Wir wollen hier einen etwas allgemeineren Ansatz machen und zunachst 

Pe? tur) 

setzen, wo J=%,+70, als komplexe GroBe vorausgesetzt wird. Fiihrt 

man k?= = ein, so laBt sich die Gleichung (la) auf die Form bringen 

(2) fe (ry) + (ry) =0, 
und wir erhalten dann 

y= : (cye*” + coe—**), 

also fiir die Winkelgeschwindigkeit einer Flissigkeitsschale im Abstand r 

vom Kugelmittelpunkt 

(3) w= oe [ere*" (kr — 1) — coe" "(kr + 1)]. 

Fiihren wir die Trennung des Reellen und Imaginiren durch mit Hilfe 

der Gleichungen 

=H +ih =VR =v [ki —ke+ Qikike], c= Ae’, 

@o=Bel, k=xe", w=a1+iWe, 
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so erhalten wir die Lésungen 

(Wy = = {A et? [rxcos(Jet + a + ker + a cos(Yet + «+ ker)} 

(4) — Be—™* [rxcos(det + Bp — ker+n)+ cos(d2t + 2 — ker))} , 

Wo =~" (Aeli” [rxsin (Dot + @ + kyr + 7) — sin (Sot + & + her)] 
r3 

— Be-"" [rzsin (Sot + BP — ker + 7) + sin(het + 6 — ker)]}- 

Die Bewegung der Fliissigkeit setzt sich also zusammen aus Zwel 

27 j A F 
Ta die nach auBen bzw. nach innen mit 

abnehmender Amplitude sich fortpflanzen, und mit einer Geschwindigkeit 
$ 

ky 
wird durch eine pendelnde Drehschwingung einer Kugel vom Halb- 

Wellenziigen mit der Wellenlange 

—=2yk,. Wenn wir nun annehmen, dali die Bewegung hervorgerufen 

messer @ um einen Durchmesser, so kénnen wir 7,—0 setzen und 

erhalten dann 

De U 4 
SSinaih| =| Ss hae, eyo ee 

Nehmen wir weiter an, dab die Flissigkeit den ganzen Raum um 

die Kugel ausfiillt, und die Geschwindigkeit fiir r—> oo verschwindet, so 

ist die Konstante 4=0 zu setzen. Wir haben dann nach (4) die beiden 

partikuliren Lésungen 

B —kr 

w= "C(kr + l)cos(9t + p — kr) — krsin(9t + 8 —kn)], 

Be-kr i 
S [(kr + 1)sin(At + 6 — kr) + kreos(dt + BP — kr)], (WW. = 

die sich in der Tat aus den oben angeschriebenen Funktionen ¥Y, und YW, 

ableiten lassen. Wir nehmen jetzt an, daB die Schwingung der Kugel 

durch die Gleichung 

(6) W = Wocosttt 

gegeben sei. Nehmen wir als Drehgeschwindigkeit die lineare Verbindung 
der Werte (5), also 

W=Wity7Wr2, 

so ist zu verlangen, daB dieser Ausdruck fiir ra und fiir jedes ¢ in 
den Ausdruck (6) tibergeht. Wir haben also die Identitat 

: Be-ka ‘ 
(U9 COS = =r {[ka(l + 7) + cos Mtcos(? — ka) —[ka(l — y) 

— 7] cos Ht sin (8 — ka) — [ka(1+ 7) + 1]sin St sin (@ — ka) — [ka(1 —y) 
—y]sin Jt cos (? — ka)\. 



§ 64. Drehschwingungen einer Kugel um einen Durchmesser. 239 

Die Glieder mit sin Jt rechts verschwinden, wenn man setzt 

ka 
oY = —— = atts 

et 1+ ka * 
dann wird aber 

aed (be ke (1+ 2ka +2 k?a?) ; = Wy a (1 + ka) e—ak 

¥ ae l+ka ? — 142ka £2202 

Man erhalt also 

w as Lad 

‘opp ear aes Se OEE ac ee) 
+ 2k?ralcos[ dt — k(r — a)| — k(r — a)sin Ht — k(r — a)]}. 

Wenn man die Schwingungsdauer der Kugel mit 7= a bezeichnet, 

so erhalt man fiir die Fortpflanzungsgeschwindigkeit c der Flissigkeits- 

wellen und fiir die Wellenlinge 4 die Ausdriicke 

c=2E, = 2 a2 
Die Wellenlange ist also der Wurzel aus 7 direkt und 

die Fortpflanzungsgeschwindigkeit dieser Wurzel umge- 

kehrt proportional. 

Bei Flissigkeiten mit kleiner Zahigkeit (y klein, also k sehr grof) 

geht der Ausdruck (7) fiir @ tiber in 

2 

(7a) Mai 5 e—k(r—4). cos[ Ft — k(r —a)]. 

Berechnung des Drehmomentes. Wenn wir den in § 59 ge- 

wonnenen allgemeinen Ausdruck fiir das Reibungsmoment benutzen 

u=; 7 wat (a), , pee 

so erhalten wir nach Einsetzung des Wertes w 

8 34+ 6ha + 6a? + 2k a8 
M=~ mua* Tota polar 0908 Jt 

iS) 16 _ -k2(1 + ka) a 
meno Teopae pa vt. 

Wegen #=2yk2 konnen wir M auch in der Form schreiben 

8 3 3 + 6ha + 6ha? + 2h a8 SO pee eee) do 

ara sae 8 8? 1a tka oho de 
(Sa) dw 

— @) Dares seas | C1 + C2 a, 
‘ 

Das Reibungsmoment der Kugel setzt sich also aus zwei 

Teilen zusammen, von denen der erste der Drehschwingung 

proportional ist, wibrend der andere mit der Drehbeschleu- 
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nigung wachst, also mit einer VergroBerung des Tragheits- 

momentes der Kugel gleichbedeutend ist. Wenn die Schwingungs- 

dauer 2 wnendlich gro wird, so geht der Ausdruck fiir das Reibungs- 
i} 

moment iiber in den friiher bestimmten Ausdruck 

M—Sariaw- 

Bei kleiner Zahigkeit wird 

,ldw_ 8 8 Se Bere 1 [os 
(8b) M= 5 TELL * «(Oy 1090" oF a = g tat| 

Das urspriingliche Tragheitsmoment J) der Kugel erfahrt also die 

scheinbare VergroBerung 

8 J=Jot gnat|/ 35 =Jo+ Mo. 
3 2% 

Die entsprechende relative VergréBerung der Periode bestimmt sich aus 

HI EL: 
iP Ee 

zu 
Eee ie pea 

(9) Va rae yer 

Wahrend einer Schwingungsperiode wird die Arbeit geleistet 

in ss 
; 4 4 4 

A= | Modt= 3 vas | a fo le 

0 

die vom. Beschleunigungsglied unabhiangig ist. Bedeutet f den Dampfungs- 

faktor der Schwingung, so ist das logarithmische Dekrement 

FB 
fa) = > 

2J 

daher die Dampfungsarbeit wihrend einer Periode 

. 27" Ff 2 27° fw 
A=) }udip= oo, S qpe ae T eT 

Setzen wir diese Arbeit der Reibungsarbeit gleich, so kommt 

\ 8 tou 
10 = —7tq* a (10) Dee ne: 
und daraus fiir das Dekrement 

4 at _j—— (11) O= 3 7) ton T, 

das also der Wurzel aus der Schwingungsdauer und der Rei- 
bute direkt und dem Trigheitsmoment umgekehrt propor- 
mona ist. Diese Formel ist geeignet, um aus den Schwingungsdaten 
die Reibungszahl der verwendeten Fliissigkeit zu bestimmen. 
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§ 65. Drehschwingung einer mit Fliissigkeit gefiillten 
Hohlkugel. 

1. Wir gehen wieder aus von dem allgemeinen, im vorigen Abschnitt 

aufgestellten Integral unserer Grundgleichung, also 

oH 
(1) oo — [c1e’" (kr — 1) — coe" (kr + 1)], 

und haben fiir die besondere Lésung des vorliegenden Problems zu 

fordern, daB die Drehgeschwindigkeit in jedem Punkt des Kugelinnern 

endlich bleibt und das Reibungsmoment im Mittelpunkt verschwindet. 

Die erste Bedingung wird erfiillt durch 

Qate=0, A=—B, a=. 

Dann wird bei Beriicksichtigung des Realteils, wenn wir —@, statt 

%, einfiihren, 

Aen it 
ae ok ae (e" [rxcos (dot + ker +a + 7) — cos(Jot + ker + «| 

+ e—!r[rxcos (dot — ker + @ + 7) + cos (Sot — ker + a}. 

Die beiden ersten Glieder entsprechen einem Wellenzug, der sich von der 

Peripherie nach innen, die beiden letzten Glieder dagegen einem Wellen- 

zug, der sich von innen nach der Peripherie zu fortpflanzt. Eine zweite 

mogliche und im wesentlichen gleich geartete Bewegung ergibt sich aus 

dem imaginaren Bestandteil 
Gt 

Qa = aos (e" [rzsin (Jot + kyr + a +n) —sin (Int + ker + @)] 

+ e—M[rxsin (Jot — ker + a+) + sin (dot —kor+a)}. 

Die Grenzbedingungen sind in ahnlicher Weise zu verwerten wie im 

vorigen Fall. Nehmen wir z. B. an, daB die Zahigkeit klein sei, so kénnen 

wir e “” gegen ei” vernachlassigen und uns im tibrigen auf die héchsten 

Potenzen von k beschranken. Wenn wir dann ?,—0, ?.= 7% setzen und 

fiir die Kugel das Bewegungsgesetz m= w) cos Jt annehmen, so er- 

halten wir fiir eine beliebige Stelle in der Flissigkeit 

(2b) (= Wo age Fa") -cos (At — k(a — r))- 

Das Reibungsmoment an der Kugel ergibt sich daraus nach der all- 

gemeinen Formel zu 

M =£auatwok[cos It — sin It] 
du 

(3) = Saja (ka)-w + 47gat(ka)~'- 

2. Um den Einflu& der Reibung sowohl der das Kugelinnere erfiillen- 

den Fliissigkeit als auch der auBeren Luft genauer zu ermitteln, werden 

Miiller, Theorie der zihen Fliissigkeiten. 16 
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wir den Ansatz etwas allgemeiner gestalten, und zwar nach dem klassi- 

schen Vorbild von H. v. Helmholtz, der sich eingehend sowohl ver- 

suchsmaBig wie theoretisch mit dem Problem beschaftigt hat). Bei den 

auf seine Veranlassung von G. v. Piotrowski durchgefiihrten Versuchen 

mit einer bifilar aufgehingten Kugel zeigte sich eine merkwiirdige Ver- 

kleinerung der Schwingungsdampfung (bzw. des Dekrementes) in dem Fall, 

daB die aus Glas gebildete Oberflache der Kugel mit einer Silberschicht 

bedeckt war, woraus Helmholtz den SchluB zog, daB im letzteren Fall 

die Fliissigkeit nicht an der Oberfliche haftet. Der von Helmholtz 

durchgefiihrten Theorie wird ein von Null verschiedener Gleitkoeffizient 

zugrunde gelegt, der sich fiir Wasser—Gold etwa zu 0,235 ergab. Die Ver- 

suche wurden spiter unter ganz ahnlichen Bedingungen von R. Laden- 

burg?) wiederholt, der nicht nur den Nachweis erbrachte, da} die Ver- 

silberung bzw. Vergoldung keinen EinfluB auf die Schwingungsdauer und 

das Dekrement ausiibt, sondern auch bei Annahme des Haftens der Fliissig- 

keit an der Oberflaiche einen Reibungskoeffizienten fiir Wasser ermitteln 

konnte, der mit dem von Poiseuille u.a. gefundenen Werten bis auf 

wenige Promille tibereinstimmte, wahrend der aus der Helmholtzschen 

Theorie resultierende Wert um 40°, gréBer ausfiel als der Poiseuillesche. 

Wir kénnen daher im folgenden an den Ladenburgschen Voraussetzun- 

gen festhalten. 

Um die Bewegungsgleichungen der Kugel aufzustellen, gehen wir von 

dem Ansatz (2a) aus und setzen a=0 sowie r=a. Dann ergibt sich fiir 

die Oberfliche der Kugel, wenn wir die mit e~"'” behafteten Glieder ver- 

nachlassigen, 

Ae. 
geha—*it.cos(Iot + koa) 

Aleta) P 
Os ea—it. cos (Sot + koa + ”) — 

L a 

und daraus fiir den Drehwinkel und die Drehbeschleunigung 

Az , ¢ 4 
p= = e4—-“t . cos (Jot + koa — n) — ——_ehia—Hit 

a*| | L a> | 3 

(4) - cos (Jat + koa — 27), 

ap dw Ax ,o_o5 9 Al#| , 
= — — tyU— Viv, 3 nf) Nee lnkya—vyt qe ap ae cos (Jat + kea + 37) fot wens 

- C08 (Yet + koa + 2m); 

dabei ist wieder zu setzen 

P= —A Ata, =| Ple2" yk? = yyx2e2, |G = px? | Sac 

1) H. v. Helmholtz (u. G. v. Piotrowski), Abhandlungen, Bd. 1, Leipzig 1882 
S. 172—222, insbes. S. 196 ff. 

2) R. Ladenburg, Uber den Einflu8 der Reibung auf die Schwingungen einer 
mit Flissigkeit gefiillten Hohlkugel, Annalen d. Physik, 4. Folge, Bd. 27 (1908) 
S. 157—185. 

> 



§ 65. Drehschwingung einer mit Fliissigkeit gefiillten Hohlkugel. 243 

Als aufere Momente haben wir zu beriicksichtigen das mit der Winkel- 
amplitude Paeaee tale Moment der bifilaren Aufhingung und der 
Torsion 

(9) Ma=Cp=(yG+b)-¢— 

sowie das Drehmoment M, der Oberflichenreibung der Flissigkeit. 
Fir M,, erhalten wir nach der ee Formel 

a Mr = *auat Ge), =2Amuat|- oe Kt. cos(Iot + ka +27) 

= 8% pina—94t -cos(9,t + koa +n) + 3 gkya— St - COs (Jot +k A 2 2 | at ' 2 2 tl) : 

Der Luftwiderstand setzt sich, wie im vorigen Abschnitt gezeigt wurde, 

aus zwei Teilen zusammen, von denen der eine Teil denselben EinfluB hat 

wie eine VergréBerung des Tragheitsmomentes. Da bei den Versuchen das 

Tragheitsmoment der schwingenden Teile durch die Schwingungsdauer 

bestimmt wird, so enthalt es bereits diesen Einflu8 der mitschwingenden 

Luft. Den tibrigbleibenden Teil kénnen wir in Anbetracht der langsamen 

Bewegung proportional der Drehgeschwindigkeit annehmen, also setzen 

(7) Mr= Ko. 

Die vollstandige Bewegungsgleichung der Kugel lautet dann 

oe 
(8) J, +Cp+Mr+Mi=0. 

Setzen wir die Beate A (4) bis (7) in (8) ein, so erhalten wir eine 

Gleichung, die fiir alle Werte von ¢ identisch erfiillt sein mui. Daraus 

entstehen dann durch Nullsetzen der Koeffizienten von cos (#2t-+ k2,a—n) 

und sin (# t+ k,a—yn) die beiden Bestimmungsgleichungen 

J|9|(x0084 4 —— e083) +0( 5 — aye 8 

8 3% 3 1 
=— ZU a*(z2c0s3 V—— cos 2 — cos )—K % Cos 27 —<,cos1)] : 

a a a 

9) : é I C 
J\9(zsin4y— | sin 3 y)+ [a - sin) 

ae San bro, eh he bh cael fat 
| =— 3 Epa [x sin 3 7 — nt +, siny] —K|zsin2y —~sin7), 

die in Verbindung mit dem Versuch zur Ermittlung des Reibungskoetfi- 

e" und damit zienten ausreichen. Die GroBen P=—h+i02 

Gall 
| el! 

V 

b= | i entnimmt man aus der Beobachtung der Schwingungsdauer 

T und des logarithmischen Dekrementes 6 zwischen zwei aufeinander- 

folgenden gleichgerichteten Maxima der Auslenkung nach den Gleichungen 

21 ; 27 

(10) Ds tT 3 Oo= wale tg 27 = —_— J ry 

16* 
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Die GréBe K wurde von Helmholtz- Piotrowski und Ladenburg 

dadurch bestimmt, da der entsprechende Versuch an der mit Luft 

gefiillten Kugel angestellt wurde. Wenn man die auf Luft beziiglichen 

GréBen durch horizontale Striche auszeichnet und auf die Kleinheit 

von = Riicksicht nimmt, so erhalt man fiir diesen Fall 
ya 

(11) w= ekia— At. cog(Iot +hea + 9) 

und daraus schlieBlich nach einer einfachen Rechnung 

C sin 47 8 

g|sin27 3 (12) K=-— 

oder nach Vernachlassigung des zweiten Gliedes wegen 

sin4d7  . A 7) 
——5— = 2cos27n = — 
sin 27 ! m 

Wat 6) 
(12a) oe 

Eliminiert man ferner J aus den Gleichungen (9) und vernachlassigt 

die mit v2 und v2 multiplizierten Glieder, so ergibt sich schlieBlich eine 

quadratische Gleichung fiir |”, aus der man den Wert berechnet 

i 3 A 5 ies 
(13) jy = Pp |Q —/Q@?+P(Csin4y + K -|3| sin 2 nt, 

wo zur Abkiirzung gesetzt ist 

‘a = 870e|9| a® sin 27 ew oe -- ze sin 27, 
|| a? a ! 

of g./2 

sin 47) cos —K- , Sin 21 cos 7. 
C 

(18a) | 4 rene 
Q = 4 tea*|F\* sin y — - 

| Ai2a 

Die GréBe C kann man aus den Konstanten der Aufhingung oder 
versuchsmaBig aus der Schwingungsdauer ermitteln, wortiber in den 
angefiihrten Arbeiten das nihere nachgelesen werden kann. 

Bei den Versuchen von Ladenburg war der Kugelradius a etwa 
5 cm. Durch VergréBerung des Tragheitsmomentes nach Anbringung 
von Zusatzgroken (Ringen) wurde erreicht, daB die Schwingungsdauer 
nicht unter 100s herabsank. Bei einer Beobachtung, die etwa bei einer 

= r . aMel ag t nol mart . . Temperatur von 18° gemacht wurde, ergaben sich die folgenden Werte 
fiir die maBbgebenden Groen: 
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Daraus berechnet sich der Reibungskoeffizient zu u=0,01028 cm2/s, der 
mit den von Poiseuille, J. E.Thorpe und J. W. Rodger, W. Kénig 
und Miitzel gefundenen Werten gut iibereinstimmt. Damit hat gleich- 

zeitig die grundlegende Annahme des Haftens der Fliissigkeit an den 

Gefafiwanden eine experimentelle Bestatigung erfahren. 

§$ 66. Aperiodische Drehung einer Kugel um einen 

Durchmesser. 

1. Wenn wir wie oben (§ 64, S. 237) fiir die Stromfunktion Y den 

Ansatz machen 

me) 

so haben wir fiir die Funktion y mit k? = * die dazu gehorige Partikular- 7 

lésung in der Form 
; ccos(kr +3) 
EO 

und fiir die Winkelgeschwindigkeit den Ausdruck 

1 O (ccos(kr+ 
(1) w= ala cree). 

Wenn #? negativ wird, so treten wie friither im translatorischen 

Fall an Stelle der trigonometrischen die hyperbolischen Funktionen auf, 

woraus sich ein Unterschied zwischen der beschleunigten und der ver- 

zogerten Drehung ergibt, der im wesentlichen darin besteht, daB die 

verzogerte Drehung eine Riickdrehung der auBeren Flissigkeit im Ge- 

folge hat, also eine Art oszillatorischer Verteilung der Geschwindigkeit 

im umgebenden Felde, wihrend im anderen Fall eine asymptotische 

Verteilung entsteht. 

2. Wir koénnen nun zur Verallgemeinerung der Betrachtung die 

Fouriersche Methode heranziehen und Lésungen fiir andere Beschleuni- 

gungsgesetze aufstellen. Das Verfahren besteht zunachst darin, eine 

Variation der GréBe # vorzunehmen und die Lésung als eine Reihe von 

Elementarlésungen mit verschiedenem # anzusetzen, deren Koeffizienten 

den vorgeschriebenen Anfangsbedingungen anzupassen sind. Im Grenz- 

fall entsteht dann ein Integralausdruck als eine kontinuierliche Folge 

von partikularen Loésungen, in den # als Integrationsvariable eingeht. 

So ]aBt sich im besonderen die Bewegung in der umgebenden Fliissigkeit 

untersuchen, die entsteht, wenn die Kugel vom Radius a plotzlich aus 

der Ruhe in gleichmaBige (langsame) Rotation versetzt wird. Die im 

Zusammenhang mit diesem Problem auftretenden Integrale haben dann 
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wieder eine vollstindige Analogie zu den entsprechenden Integralen der 

Warmeleitungsgleichung. Setzt man 

= hey. 

so wird k= und wir erhalten dann eine Lésung fiir m in der Form 
ae ? 

ab — cosA(r—a +<)]. (Ja) (oo) = 

Multipliziert man nun mit d/ und integriert zwischen den Grenzen 0 

und oo, wie in dem entsprechenden Beispiel des § 44, so ergibt sich als 

weitere Losung 
— (r—at+e)? 

7/1 —-— \ 

(2) = e | = 5( 4vt 

OV rpOr ee , 

Setzt man ferner zur Variation der Konstanten c 

C— 1 (e) 

und integriert nochmals zwischen denselben Grenzen, so kommt 

(r—at+ ea)? 

(3) =) a0) Rl ree 

Man kann nun leicht nachweisen, dai die Oberflachenbedingungen 

erfiillt sind fiir 

F(a) = —2awon—(l—e %). 

Dann ergibt sich (vgl. § 44, S. 163) 

a i +a)? 

EN eg ee ee aw a ( 
(3a) w= ——* | | (l= ese 4 e€ 4vt da. 

rVavet \ ? 
0 

Ist t von Null verschieden und r—a, so wird in der Tat 

«2 

= e ttdq = Wo . 

0 

Ist ferner r>a, so wird w=0, wenn # verschwindet. Wenn r—a und 
t—0 ist, so wird die untere Grenze unbestimmt. Aber da in diesem Falle 

® =p, wird, so folgt, daB, wenn d=r—a gesetzt wird, die GréBen 6 
SA eae lao R ) eee und ¢ so verschwinden miissen, dak —=Q(Q wird. Fir too, also 

2) vt 

praktisch nach einer hinreichend langen Zeit, wird die Drehgeschwindig- 
keit einer Fliissigkeitsschale im Abstand 

aw 
(td oF 

r3 
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Die in (3a) vorkommenden Integrale kénnen wieder durch das 
Fehlerintegral ausgedriickt werden. Setzt man namilich 

r—a+a=2uyrt, 

_ Ans : r—@a 
so erhalt man mit w)=—— den Ausdruck 

vt 

0 Uo 

: ; vt hey 
Wenn man im zweiten Integral die Variable ut] _ =w' einfihrt, 

so ergibt sich 
/ D ayia i 

- — (24244) cu 
a 1g 

Je du=e fe-¥? dw’. 

uo Uo 

Im ganzen entsteht also mit Kinfiihrung des Fehlerintegrals folgender 

Ausdruck fiir die Winkelgeschwindigkeit : 

eG ey ee eT, oe ome 
wo =— wo \— 1—F.(——*) oes “a ae Sesh if 

| | 2Vvt/! 2) vt oe 

2: 4 oe: * vt - 
Wenn man das Verhaltnis —— etwa ftir a= ll winel pi—see tim Aloe 

Wo = 

hangigkeit vom Radienverhaltnis - auftragt, so zeigt der Vergleich der 

beiden Kurven, da®B bereits nach verhaltnismaBig kurzer Zeit der zur 
. =p: . aerial - WwW . . 

gleichmaBigen Rotation gehérige Grenzwert — erreicht wird. 
Wo 

$67. Beschleunigte (oder verlangsamte) Drehung eines 

Zylinders. 

Um die auf Zylinderkoordinaten transformierte Gleichung fiir die 

Drehung eines Kreiszylinders, also 

evr 10 ev 10¥_ 
() Ort) > Ort ue Oz v Ot 

zu integrieren, setzen wir zunachst ebene Verhiiltnisse, also Unabhangig- 

keit der Bewegung von der axialen Koordinate z, voraus. Dann geht 

mit der Substitution 

(2) Pie a U(r) 

die Gleichung fiir ¥Y iiber in die Gleichung fir 7 

(3) Feo re ee Ga 



248 Instationire Drehbewegungen von Rotationskérpern in zihen Flissigkeiten. 

die von der Besselschen Funktion nullter Ordnung erfiillt wird. 

Mit k=|/ se haben wir 

(4) x= ado(kr) + bNol(kr). 

OE: “3 Fac 
Die Geschwindigkeit 09 =O — geniigt der Gleichung 

(5) aera avr Gl ene 

und es ergibt sich ohne weiteres aus dem Wert (4) von x in Uberein- 

stimmung mit den friiheren Ausfiihrungen, daB sich v in der Form 

darstellen laBt 

(6) v=e—"ticedi(kr) +d Ni(kr)]. 

Wenn # negativ ist, was dem Fall beschleunigter Drehung entspricht, 

treten die Besselschen Funktionen mit imaginirem Argument auf. 

Fuhren wir nach englischer Bezeichnung ein 

Jo(tkr) = Io(kr); — is (tkr) = (kr) 

und an Stelle der Funktionen zweiter Art No(ikr) und N,(ikr) 

Ko (kr) = 9 [iTo(ikr) — No(ikr)], 

[K, (er nt . : . = Killer) = — 7 AED _ _ 2 oy ékr) + MiGkr)], 

so kénnen wir y als lineare Kombination von /)(kr) und Ko(kr) sowie v 

als Linearverbindung von J,(k7r) und A,(kr) darstellen. 

Soll z. B. der Zylinder vom Radius r= a mit der Geschwindigkeit 

voe’* rotieren, wihrend die Fliissigkeit an dem konzentrischen Zylinder 

r=To >a haften soll, so lassen sich die Konstanten ohne weiteres be- 

stimmen. Man erhalt z. B. im ersten Fall der verzigerten Drehung 

J (kr) J ie 

Ve ee ero) 

Wy Us Pens Era tbaidatursh 
9) N, (ka), (kr 

| 
| 

Der Unterschied zwischen den beiden Fallen @==0 zeigt sich in 
Analogie zu dem friiher behandelten Fall der linearen Bewegung wieder 
darin, daB im Fall der exponentiell beschleunigten Drehung die Ge- 
schwindigkeit der Fliissigkeit vom Rande r=a bis zum (iuBeren) Rand 
*=?ro kontinuierlich auf den Wert Null herabsinkt, wahrend im Fall 
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der Verzégerung eine Art stehender Wellenbewegung vom Zylinder sich 
ausbreitet, wobei die Knotenpunkte den Nullstellen der Funktion 

Ji(kr) Ni (kro) — Ji (kro) Ni (kr) = 0 

entsprechen?) (vgl. Abb. 86 und 87). 

} 
Abb. 86. Abb. 87. 

Abb. 86—87. Laminare Flissigkeitsbewegung zwischen zwei konzentrischen Zylin- 

dern bei beschleunigter und verzo6gerter Drehung des Innenzylinders. 

Fiir beschleunigte Drehung eines Zylinders in einer unendlich aus- 

gedehnten Fliissigkeit haben wir 

(8) v= ve? t ——___. 
( a slo 

2. Allgemeinere Losungen, die man einem beliebigen Geschwindigkeits- 

gesetz der Drehung anpassen kann, gewinnen wir dadurch, daB wir eine 

Summe oder unendliche Reihe von Lésungen von der Form (6) mit ver- 

schiedenem 7? ansetzen. Setzt man #—A/2y, so laBt sich v auf die Form 

v= > tage Cid 1 (Air). 

i 

Wenn das Geschwindigkeitsgesetz zur Zeit t=0 gegeben ist, so lassen 

sich die zunachst noch unbestimmten Koeffizienten wie bei der Fourier- 

schen Entwicklung durch bestimmte Integrale ermitteln. Der Grenz- 

fall, daB die Summe in ein Integral iibergeht, wird beherrscht durch 

den bereits friiher benutzten Bessel-Fourierschen Integralsatz 

bringen 

faa fi Heyl av. (led (Fy fires er 
( 0} ly h, O : 

hot eeu aaNrce’ s ©: ~ | £0 fir n>r>nr. 

1) Die Wurzeln dieser Gleichung finden sich in dem Tabellenwerk von Jahnke- 

Emde, 8. 162; vgl.auch A. Kalahne, Z.f. Math.u. Physik, Bd. 54 (1907), S. 55 — 86. 
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Insbesondere lat sich mit Hilfe dieses Satzes das Problem der momen- 

tan einsetzenden gleichmaBigen Drehung eines Kreiszylinders in einer 

zahen Fliissigkeit behandeln, das unmittelbar mit der Ausbreitung einer 

kreiszylindrischen Wirbelschicht zusammenhangt. 

$68. Drehschwingungen eines Zylinders in der Fliissigkeit. 

1. Wenn wir unter Voraussetzung einer periodischen Drehbewegung 

eines Zylinders fiir die Stromfunktion den Ansatz machen 

iP — eFilt.y, 

so erhalten wir fiir 7 die Differentialgleichung 

ay 1 dy + pate. 

) dt idee ke 

der die Lésung entspricht 

(2) y(n) = er Io (PHikr) + c2Ko(Vtikr). 

Die beiden Funktionen 7, und AK, lassen sich in je einen reellen und 

imaginaren Bestandteil zerlegen. Man setzt nach Kelvin 

Io(Vikr) = ber(kr) +7 bei(kr), (3) ea 
Ko\V+tkr) =ker(kr) +ikei(kr). 

Fir die hier auftretenden Funktionen gelten die Entwicklungen 

yt “8 x 
‘bera = l—satoemewet 22.42. 62.82 

x? a8 qo 
bei x= - — So a2 1 92.42.62 1 92.42 g2.g2.102 + °°" 

(4)\ ker a = —Igiya-bera + tit beia — a + 3) 
18 

1 38 angi 
tea a 

kei «= —Ig}ya-beiv — 47 bera + 3. — 5, ——  l+3+3)4+- 

(5) po \2rx ; 

Kv tieeamles sce Vio 

Nach diesen Vorberei " i i i eser, Vorbereitungen betrachten wir nun die beiden Fialle, 
daB die Fliissigkeit entweder das Innere des schwingenden Kreis- 
zylinders oder den unbegrenzten Raum auferhalb des Zvlinders erfiillt. 
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2. Fliissigkeit im Innern des oszillierenden Kreiszylinders. 
Da in diesem Fall zu fordern ist, daB Y und @ im Mittelpunkt, d. h. fiir 
y=, nicht unendlich werden, so ist hier der Gebrauch der Funktion 

K o(V tkr), die im Nullpunkt logarithmisch unendlich wird, auszuschlieBen, 

mithin das Integral allein mit J, (/ikr) zu bilden. Wenn wir beide Zeichen 

von @ beriicksichtigen und die entsprechenden Integrale linear kombi- 

nieren, so erhalten wir die Lésung in der reellen Form 

Y= (A +7B)e***[ber(kr) + 7 bei(kr)| 

| 4+- (A — 7B) e—***[ber(kr) — i bei(kr)} 

= 2 A[cos Ut ber (kr) — sin Jt bei(k7)] 

— 2 B{cos Jt bei (kr) + sin It ber(kr)]. 

Fiihrt der Zylinder (r =a) eine Drehung 

(6) 

(0 = Wo sin Wt 

aus, so mu infolge des Haftens der Flissigkeit an den Wanden fiir (6) 

die Grenzbedingung 
fee a er 
al ) = Wo sin vt 
To OF r=a 

mit jedem Wert von ¢ erfiillt sein. Daraus flieBen dann die beiden Glei- 

chungen 

(7) f A ber (ka) — B bei’ (ka) = 0, 

L a@wo = — 2 Ak bei (ka) — 2Bk ber (kr), 

wo die Striche die Ableitungen nach dem Argument bedeuten. 

Es ergibt sich daher 

Tees iy woe j ber (kr r) bei’ (ka) —bei (kr) ber’ (ka) | 

| k \ ber’? (ka) + bei’? (ka) 
(8) iy gy (borer) ber’ (ka) + bei (kr) bei’ (ka) | _ 

Gan a \ ber’? (ka) + bei’? (ka) iI 

Betrachten wir im besonderen den Fall kleiner Zihigkeit, der durch 

groBe Werte von k bzw. kr charakterisiert ist, so lassen sich die Bessel- 

schen Funktionen in erster Anniherung gemaB (5) durch Exponential- 

und trigonometrische Funktionen darstellen. Wenn man die aus (5) sich 

ergebenden, fiir groBe kr brauchbaren Werte 

kr 

s ‘Kk 
ber’ (kr) ~~ eas e)2 cos (5 + Zi) 

(9) kr 

1 5 
bei (kr) ~ aie e!2 si | ale =) 
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n (8) einfiihrt, so ergibt sich die Stromfunktion 

Laer hae See eee k n 
(10) pate /S fe -sin| E+ Sr — a) — a 

und die Winkelgeschwindigkeit 

11 agp pi inet : (r — a) |. (11) w=(_) we sin |: ze | 

Das widerstehende Reibungsmoment wird 

k ae 
M = —42woa' a (cos +t + sin At). 

3. Flissigkeit auBerhalb des Kreiszylinders. In dem Fall, 

daB die Flissigkeit das AuBengebiet des Kreiszylinders erfiillt, haben 

wir in dem Integral (2) statt der Funktion J, (kr ) 7) = ber (kr) + 

i-bei(kr), die fiir r—» oo unbegrenzt wachst, die Funktion Ky (Vikr) 

allein zu verwenden. Wenn die Grenzbedingung wieder 

oe = Wo sin Vt 
ON be —*(/ 

lautet, so erhalten wir die Lésung dadurch, daB wir in (8) die Funktionen 

ber und bei durch ker und kei ersetzen; es wird also 

| ree Peete: gt. [=aen = i(k a) — ke BCU Shall 4») | 

(12) k er”? 2(k a) + kei (ka) 

UNO a ker (kr) ker'(ka) + kei(kr) kei’(ka) : 9 : 
| at ane is | ker’? (ka) + kei’? (ka) |: 

Bei kleiner Zahigkeit kénnen wir in Analogie zu (10) die N aiherungs- 

relationen Pare 
, 7 Das ‘kr 7 

ker’ (kr) | a e V2. cos { — ] 
2kr C BBE 

(13) et 

kei’ (kro — ye 12 - sin(*2 — 2) 

benutzen, mithin statt (12) 

und 

schreiben, woraus dann fiir das Reibungsmoment, das an der Oberfliche 
des Zylinders wirkt, detselbe Naherungsausdruck wie im vorhergehenden 
Fall folgt. 
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§ 69. Drehschwingungen eines begrenzten Zylinders. 

Wenn man bei der Lisung der Differentialgleichung (1) des § 67 

die Abhangigkeit von z beriicksichtigt und als Zeitkoeffizienten wieder 

e"' wahlt, so erhalt man mit dem Ansatz 

%= R(r)-Z(2) 
die Gleichung 

oe 1 . oe Ef 

(1) R-Z+—RZ+ RZ+"RZ=0. 
Setzen wir 

(2) R+-R-¥R=0, 

so ist R eine Besselsche Funktion, und es bleibt die Gleichung 

(3) Z+(2+i)Z = 
mit (a?+ k?)»=%@ erhalten wir alsdann das Integral 

(4) ‘P = (A cosaz + Bsinaz): Bo (kr)e— 

Fir die Winkelgeschwindigkeit 

De: es 
Ol 

erhalten wir wegen 
dB, () eS Bil 

din 1 (a) 

einen Ausdruck von der Gestalt 

: By(kr) _ 9 : =§ (5) w=(Acosaz+ Bsinaz)— eae ‘—=(Acosaz+ Bsinaz)Fi(rje—"'. 

Diese Lésung ist von O. E. Meyer?) auf den Fall des beiderseits durch 

ebene Flachen senkrecht zur Achse begrenzten Zylinders angewendet 

worden. Meyer benutzt dabei die Darstellung der Besselschen Funk- 

tionen durch bestimmte Integrale. Die Funktion 6, (kr) lift sich linear 

zusammensetzen aus zwei Funktionen erster und zweiter Art, J; (kr) 

und G,(kr), fiir die die Integralformeln gelten 

TU aie 

| Shes = | efrS(l — 52)" d5 = S{kr), 

(6) vee 
G (hk ff hs ees Ge = — f etkr'(§ — Fas = — Qkr) 

1 

1 0. E. Mover Bestimmung der inneren Reibung nach Coulombs Verfahren, 

Ann. der Physik, Bd. 32 (1887) 8. 624—659; O. E. Meyer, Ein Verfahren zur Be- 

stimmung der inneren Reibung der Flissigkciten, Ann. d. Physik, Bd. 43 (1891), 

Sales 
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Wir kénnen also setzen 
k . 

(7) FQ) = = sikr) + CQ). 

Wenn wir insbesondere die Bewegung einer Fliissigkeit im Innern 

eines Kreiszylinders bestimmen wollen, so haben wir bei Unterdriickung 

der Funktion Q, die fiir > =0 unendlich wird 

oe |) | 
(8) F(r) = S(kr) = | dSy1 — S*coskrds. 

=i 

Wir nehmen nun mit O. E. Meyer an, dafi der Zylinder sich mit einer 

Winkelgeschwindigkeit dreht, die durch die Gleichung 

(=Woe"t 

gegeben sein mége, wo # als eine komplexe GréBe anzusehen ist. Wenn 

ferner der Zylinder den Radius a und die Hohe 2 / hat, so ist zu fordern, 

daB die Geschwindigkeit der Fliissigkeit sowohl fiir r=a als auch fiir z= h 

in den Ausdruck (9) tibergeht. Die Erfiillung dieser Randbedingungen ist 

nur méglich, wenn wir eine unendliche Reihe von partikularen Integralen 

verwenden. Fiir das erste Integral setzen wir k=0; dann wird S(kr) 

eine Konstante. Fiir die anderen Integrale setzen wir 

wad 2n—1 2\2 G2 =~ | Eker PR! 
Die dadurch entstehende Reihe . 

Saez . (2n—lh=2 (9) (= c nts edly Sek sin ( ase 2) Sy (k n)| e~ 
cosah Z yh 

gentigt bereits der Bedingung, fiir z=-- von r unabhingig zu werden. 

Um auch die entsprechende Bedingung fiir r=a zu erfiillen, setzt man 

fn Ben ae 1 

wt Dine eh (a) 

Der endgiiltige Ausdruck fiir @ wird dann 

is [cos@e 42 » (20 — — 2) ) S,, (kr) ) _9 

PG ae 0 oe, ea =) ak? sin{ 2 a2 A ame iy kh 
Als Bewegungsgleichung des Zylinders haben wir ferner 

ihe 
(10) Je trp t+M=0. 

Das Reibungsmoment M setzt sich aus zwei Bestandteilen zusammen, die 
von der Reibung lings des Zylindermantels und langs der Begrenzungs- 
ebenen des zylindrischen Hohlraumes herrithren. Man hat dann nach 
den allgemeinen Formeln 

Th 

Ql) JGR +hp=—2 qcfat aa(e), + [rar eae Ale 
os, 1a 0 fa — hh \YUe/2=—h 
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Den Parameter # erhalt man durch Einsetzen von @ und g=—~2 eA 

Beriicksichtigt man die Differentialgleichung fiir @ oder S(rk), namlich 
12 

(12) ae tS eS =O, 
dr? 

so ergibt sich nach einer einfachen Rechnung 

(13) J+ - +aucacattgah — 2mjtat > — ae y S(ka) = 0, 
2n—1 ak? 

wobei 
1 dS (kr) 

0S areas 

gesetzt wurde. Bei den Versuchen von Miitzel u. a. war die Hohe 2 h des 

zylindrischen GefaiBes gering im Vergleich zum Halbmesser a. Es ergibt 

sich dann, wie Meyer gezeigt hat, da die Gleichung (13) unendlich viele 

reelle Wurzeln und im allgemeinen auch vier komplexe Wurzeln 

Vo = fii Se ame > ya = — mM +— ime 

besitzt. Mit Einftihrung der Schwingungsdauer 7’ und des Dekrementes 6 

haben wir 
1 d+2t7 

ue st i= ms 

Die Funktion S(kr) wird mit wachsendem 7, wie die Differential- 

gleichung erkennen laBt, mit cos kr proportional. Man kann daher fir 

groBe Werte. von @ angenahert setzen 

S(ka) = — ktg(ka). 

Fiihren wir noch zur Abktirzung ein 

2n—la _j— Saale. 
H?T — 0 

ye w=———, 2ow=n, 

so laBt sich die Gleichung fiir # angenihert auf die Form bringen 

J+2in ‘ are OEY acces FAT ptt pr $F + aigaty9 
ae =8 5 20» i (J + 2t2) (0 — 200 — A*D)(v + tw) _ 

7 ( 2n — 1)2(v? + w?)? 

Daraus entstehen durch Zerlegung in den reellen und imaginaren 

Teil zwei Gleichungen, die nach Elimination von f? auf eine endgiiltige 

Bestimmungsgleichung fiir den Reibungskoeffizienten y fihren. Wenn 

man noch die Grohe 

Qt? =i) H® T)w = a(2d + H* Dy 

K= Dea)" ia (v? + w)3 
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einfiihrt, so ergibt sich fiir ~ bei Vernachlassigung der Quadrate und 

hdheren Potenzen von 6 der Ausdruck 

1 8Jd 
14 f aro 5 : ¥ 

(14) oe at (27 — J) + Kha® 

Die angegebenen Formeln hat K. Miitzel') benutzt, um die innere 

Reibung von Salzlésungen zu bestimmen. Er verwendete dabei einen 

Hohlzylinder mit dem inneren Durchmesser 24 = 19,79 cm und der Hohe 

2h=2,46cm. Das Tragheitsmoment der festen schwingenden Teile war 

J=76052 gcms?. Die Werte von &K unterscheiden sich nur wenig bei 

den verschiedenen Flissigkeiten und kénnen daher aus einigen Spezial- 

werten durch Interpolation gefunden werden. Fir das groBte logarith- . 

mische Dekrement, das der Normallésung von baCl, zukommt, ergibt 
: y ae : € = : a : 

sich = 0,19255; ferner wird = = 3,7375 (bei Meyer mit K bezeichnet). 

Fiir Wasser ergibt sich ef == (15622: 00 By = 38,8508. Wir stellen im folgen- 

den einige von Miitzel gefundenen Werte des Reibungskoeffizienten 

zusammen, die alle emer Temperatur von 20° entsprechen. Die unter P 

angegebenen Werte beziehen sich auf den Prozentgehalt der Salzlésung. 

Flissigk eit | P | u 

Chlornatrium  ——-2,925 | 0,01062 
NaCl | 585 | 0,011295 

Chlorkalium | 3,73 | 0,010116 
KCl 7,46 —-0,010085 

Natriumnitrat | 4,245 | 0,010583 
NaNO, 8,489 0,011200 

Kaliumnitrat | 5,046 0,010104 
KNO, 10,092 ——-0,010056 

Wasser H,O = 0,010 141 

Es ergibt sich unter anderem aus den Miitzelschen Bestimmungen, 
daB die Reibung der Chloride stets gréRer ist als die der entsprechenden 
Nitrate, mit Ausnahme der Magnesiumsalze. Ferner ist die Reihe der 
zweiwertigen Metalle hinsichtlich ihrer ReibungsgréBen (Ba, Zr, Ca, M g) 
umgekehrt wie die nach den Molekulargewichten geordnete Reihenfolge. 

1) K. Miitzel, Uber innere Reibung von Fliissigkeiten, Ann. der Physik, 
Bd. 43 (1891), S. 15. 
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§ 70. Schwingungen einer Scheibe. 

1. Die von der Drehschwingung einer Scheibe hervorgerufene Fliissig- 

keitsbewegung liBt sich in ganz ahnlicher Weise bestimmen wie die im 

vorigen Paragraphen betrachtete Drehschwingung. Wir wollen zunichst 

annehmen, daB die unendliche Ebene der Scheibe eine Drehung um die 

z-Achse mit der veranderlichen Drehgeschwindigkeit 

(1) (W = Wo Cos ttt 

ausftihrt. Dann kann die erzwungene Drehung der Fliissigkeit als eine 

Funktion von z und ¢ angesehen werden. Die allgemeine Gleichung 

Ow 3 0w Ow 1 Ow 

(2) Or r Or a Oz v Ot 

reduziert sich daher auf 

Ow 1 Ow 

(2a) O22 je og 

und die Behandlung schlie8t sich unmittelbar an die Bewegungsfalle der 

§§ 27, 28 an. Man erhalt als partikulire Lésung 

f ( = Woe ©* cos(It — kz), 
(3) w a 

| p =—e—** sin(Ft — kz), 
ap 

| ra . 

wobei k= |/ =| ° zu setzen ist. 
2 (ae 

Um die Arbeit zu berechnen, die nétig ist, um den vom Kreis um 0 

mit dem Radius Rk begrenzten Teil der Ebene zu bewegen, benutzen 

wir die bekannte Grundformel § 54, (7c). Wir erhalten daraus 

dM 

dr 
a ae (33) ae 47r? uk Wo (cos dt — sin Jt) 

und damit 

iM = iE —dr = — 1k R*wo(cos Pt — sindt) = 

0 /2n3u0 ass = — Wo VH K+ cos 2 7 eae 

Aus der augenblicklichen Leistung 

a= Mw = Mwocos Jt 

ergibt sich daher die wahrend einer Periode geleistete Arbeit 

22 

if ' : 
Mego [ice (5) A= 5; di= a Rto,d *\/>-: 

0 
Miiller, Theorie der ziihen Fliissigkeiten. 17 
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Diese Formel kénnen wir mit einer gewissen Annaiherung anwenden 
es ; 

auf die zuerst von Coulomb untersuchte Bewegung einer Scheibe, die an 

einem verdrehbaren Metallfaden aufgehangt ist und in eine Fliissigkeit 

hineintaucht. Bei einem Tragheitsmoment J der Scheibe, einem Elon- 

gationswinkel m und einem Torsionsmoment /? y, ferner emem Dampfungs- 

faktor 6 haben wir 

(6) Jp+bo+fPp=0, 
mithin 7 

p= ge sin dt T= 57° 

Mit der Schwingungsdauer 
a7 fy 

=— | a 

erhalt man das Verhaltnis zweier phasengleicher Amplituden und das 

Dekrement zu 

V2 Gaye Bis G = 

neces ( Cae oe 2J 

Fir die Dampfungsarbeit, die wahrend einer Periode geleistet wird, er- 

gibt sich dann mit der fiir kleine 7; zulassigen Substitution 

= posin et =~ sin Jot (Pp = (fo SIN vet = o SIN V2 

der Ausdruck Mi 

dg 227d ge 
(7) foqpat=- a 

0 

Wenn wir von dem Kinflufi der Scheibenbegrenzung und der Gefab- 

wande absehen und dann diese Arbeit gleich dem oben berechneten 

Wert A setzen, so ergeben sich die Naherungswerte 

3 ) , 4 ——— 

(8) j= Rs] s 7 4 6= a wmouT. 

2. Die nach den gegebenen Formeln berechneten Werte fiir den 
Reibungskoeffizienten fallen etwas zu groB aus. W. Kénig') und 
O. E. Meyer?) haben daher eine genauere Naherungsrechnung an- 
gegeben, in der die vom Scheibenrand und den auBeren Grenzen des 
GefiBes iibertragene Reibung beriicksichtigt werden. Um kurz den 
Gedankengang der Meyerschen Theorie wiederzugeben, kénnen wir 
ankniipfen an die Betrachtungen des vorigen Paragraphen, in dem 
bereits der mathematische Charakter des Ansatzes charakterisiert ist. 

1) W. Kénig, Uber die Bestimmung des Reibungskoeffizienten tropfbarer 
Flissigkeiten mittels drehender Schwingungen. Ann. d. Physik, 32, 1887, S. 193. 

*) O. E. Meyer, Uber die Bestimmung der inneren Reibung nach Coulombs 
Verfahren. Ann. d. Physik, 32, 1887, S. 642—-659. 
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Die Dicke 2, der Scheibe mége als klein im Verhiltnis zur Hohe 2 hy 
des GefaBes vorausgesetzt werden. Der in horizontaler Richtung unbe- 
grenzt gedachte Flissigkeitsraum lift sich in zwei Gebiete zerlegen, die 

von dem durch den Scheibenrand gelegten Zylinder (Radius R) vonein- 

ander getrennt sind. Innerhalb des Zylinders (r< R) kann man annehmen, 

daB die Winkelgeschwindigkeit m fiir die Punkte einer horizontalen 

Flissigkeitsschicht von der Hohe dz konstant bleibt; auBerhalb (r> R) 

soll die Ubertragung von Geschwindigkeit durch Reibung nur in hori- 

zontaler Richtung moglich sein. Die Differentialgleichung der Winkel- 

geschwindigkeit @ fiir r> Rk wird durch die einfache Gleichung 

Ow 

(9) oe 
, Ow 3 0 

Or? ae r Or 

ersetzt, wobei aber w auch von der horizontalen Koordinate z abhangig 

sein soll. Fir r< F stellen wir eine neue Gleichung auf, die sich be- 

zieht auf die ohne innere Verschiebung vorausgesetzte Bewegung einer 

fliissigen Scheibe vom Radius & und der Héhe dz unter dem Einflub 

einer dreifachen Reibung, naimlich an der unteren und oberen ebenen 

Grenzflache, sowie an dem kreiszylindrischen Rande. Man erhalt wie 

fiir eine feste Scheibe unmittelbar 

Ow Ozu 4 /Ow 

(10) Cae laa TR teal 

Zur Loésung von (10) fiir die Gebiete z>h, baw. z< —/h, setzen wir 

(11) eC ee pee RY 
sin « (Ay —h,) 

Bei der Lésung von (9) haben wir mit Riicksicht darauf, daB @ fiir 

7—> oo verschwinden soll, die frither eingefiihrte Funktion S(kr) zu unter- 

driicken und erhalten dann 

sina (h, + 2) Q(kr) _ o¢ 

(12) OO (hee) OEE) (r>f), 
wo 

Q) == [ agye— letkrs 

i 
und 

dQ 

4b 4{ dr pat 
oe kh? = a? — +( ae =A »P(k fh) 

zu setzen ist, wahrend die Geschwindigkeit der Scheibe durch 

w= Cet 

is 
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gegeben sein mége. Fiir die Bewegung der Scheibe gilt dann entsprechend 

dem friither behandelten Falle des Kreiszylinders 

== ml é R 5 

| w Cw | ; 

(13) Ip~+f p= 2B | dz(5 ane +f ey i zs Bars 
= hy 0 

Setzen wir die Ausdriicke (11) und (12) in (13) ein, so finden wir die 

Gleichung 

(14) J# + f? — aud {a Rt etg a(he —hi) —4h RB? P(kR) =0 

fiir die komplexe GréBe #, deren Bestandteile niherungsweise durch 

Vermittlung der Versuchsgréfen 

bestimmt werden k6énnen. 

Unter der Voraussetzung, daB h.—h, und R geniigend grof sind, 

k6énnen wir bei hinreichend kleiner Zihigkeit angenahert setzen 

Pkr=tk; 

also a 
al) va su! 

CaP +4aiS, a=k- 2ip=| > t2tps 

(15) ctg a(he — hi) = —7. 

Danach wird die Bestimmungsgleichung fiir ? angen&dhert 

R3\2 f2 / RS Lhe 8 
(16) 0=(9— uF] a Le Ager + 7- aa )uodv i. 

Daraus ergibt sich angenihert mit Riicksicht auf die Kleinheit von yu 

Rt z 
0= 5 7 VF 0 T +e —uT 

Ty (17) ay, # eerie th 

Der oben in erster Anniherung ermittelte Wert (8) des Dekrementes 
. . . rad 2 /q y erscheint also hier mit dem Korrekturfaktor 1-+ 2 ) ee multipliziert. 

70 

Wir kénnen mit der Abkiirzung 

Rt — 
e= Fy ltouT 

die aus (16) sich ergebende Reihe fiir das Drehmoment auch in die Form 
setzen ee 

1—(1— e+]: 
Die Umkehrung dieser Reihe ergibt 

i BJ \/d\2 é=—— =S Ap OUT ae i 0B) 2) pei 

0=27¢ 



§ 71. Allgemeines. 261 

woraus dann der genauere Wert des Reibungskoeffizienten i sich er- 
rechnen laBt. 

Nach dem geschilderten Verfahren hat Meyer die Werte von me fir 
Wasser, verschiedene Salzlosungen und Ole bei mehreren Tempera- 
turen ermittelt und gute Ubereinstimmung der aus mehreren Messungen 
stammenden Zahlen untereinander sowie mit den aus Strémungsbeob- 
achtungen gewonnenen Resultaten erhalten. Namentlich erwies sich bei 
Flissigkeiten von groBer Zahigkeit, wie Ol, der Betrag der Korrektion als 
ziemlich erheblich, so daB die neuen Reibungswerte fast die Halfte der 
nach dem Aalteren Verfahren!) berechneten Werte ausmachten. Fiir die 

Bestimmung der Luftreibung muBte die Coulombsche Versuchseinrich- 

tung wesentlich abgeandert werden, woriiber in der Meyerschen Arbeit 

das Nahere nachgelesen werden mége. 

ELFTES KAPITEL. 

Elemente der Oseenschen asymptotischen Theorie 
des Widerstandes. 

§ 71. Allgemeines. 

Wenn man die Ergebnisse der in den vorigen Abschnitten dargelegten 

Grenzschichttheorie kritisch ttberblickt, so wird man nicht sagen kénnen, 

daB damit eine vollstaindige Widerstandstheorie geschaffen wurde. Un- 

zweifelhaft liegt die Bedeutung der Theorie in einer physikalisch rich- 

tigen Erkenntnis, die durch viele Einzelversuche gestiitzt wird. Ebenso 

wird man anerkennen miissen, dali auch die rechnerischen Resultate 

mit der Erfahrung im wesentlichen im Einklang stehen. Diese Resultate 

beziehen sich allerdings zunichst nur auf das erste unmittelbar nach 

Beginn der Bewegung einsetzende Umbildungsstadium der reinen Poten- 

tialstromung oder, konkreter gesagt, auf die Lage der Ablosungsstelle als 

den Ursprung der Wirbelbildung. Uber den Zusammenhang des mittleren 

Kielwasserstromes mit der Form des sich gleichmaiig bewegenden Kor- 

pers vermag die Theorie nichts auszusagen, weil sie im Grunde nur die 

Vorgiinge in der laminaren Grenzschicht zu erfassen vermag. Und eine 

solche Aussage wire fiir die vollstandige Bestimmung des Widerstandes 

erforderlich. Ferner bringt die Annahme von gewoéhnlicher Potential- 

stromung auBerhalb der Grenzschicht eine Unbestimmtheit in die Theorie 

hinein, die den Mathematiker unbefriedigt lat. Da namlich die sekundar 

1) Vgl. auch O. E. Meyer, Pogg. Ann. 113 (1861), S. 74f. 
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mit der Grenzschicht verbundene Wirbelbildung, insbesondere hinter der 

Ablosungsstelle, auch die Verteilung der Geschwindigkeiten und Drucke im 

Potentialgebiet beeinflussen wird, so miiBte man, um den wirklichen Ver- 

hiltnissen Rechnung zu tragen, ein neues Potentialfeld einfithren, das einer 

im hinteren (an der Ablésungsstelle beginnenden) Teil veriinderten Kontur 

entspricht, bzw. ein durch Potentialwirbel erganztes Feld substituieren. 

Durch diese Erginzung wiirde aber zugleich die Ablésungsstelle eine Ver- 

schiebung erfahren, so daB schlieBlich die widerstandstheoretische Frage 

darauf hinausliefe zu entscheiden, ob die Reihe der auf diese Weise 

auseinander entwickelten Zusténde einem mittleren quasistationaren 

Grenzzustand zustrebt, der z. B. fiir den Formwiderstand der Korper- 

kontur allein entscheidend sein wiirde. Daf die Einsetzung eines ver- 

suchsmakig gefundenen Druckverlaufes in die Grenzschichtgleichung, wie 

es gelegentlich zwecks Vergleich der so ermittelten Ablésungsstelle mit 

der Erfahrung versucht wurde, keinen wirklichen theoretischen Fort- 

schritt bedeutet, liegt auf der Hand. 

Es bleibt daher das bisher noch nicht endgiiltig geloste Problem be- 

stehen, die Widerstandsbestimmung auf Grundlage der vollstandigen 

Randwertaufgabe zu behandeln, d. h. die Druckverteilung am Rande eines 

geschlossenen Kérpers organisch aus den allgemeinen hydrodynamischen 

Differentialgleichungen herzuleiten, und es fragt sich im besonderen, wie 

sich die Theorie gestaltet, wenn gleichzeitig auf die durch die Kleinheit 

der Reibung gekennzeichneten Grenzschichtverhaltnisse Riicksicht ge- 

nommen wird. Mathematisch muf man von dem Eingestiindnis seinen 

Ausgang nehmen, daf die ungektirzte Bewegungsgleichung (vgl. § 4) 

HW a ae / Ov (1) —f 2 + =) +vxXrotv+v4n = oy 

bisher noch nicht soweit gelést werden konnte, daB man hoffen darf, 

besondere Randwertbedingungen zu erfiillen. Wenn man in dieser Glei- 

chung rot p=2w=0 setzt, so entsteht die Eulersche Gleichung der 
reibungslosen Bewegung. Kine reibungsbehaftete Strémung ohne Wirbel- 
bildung ist daher nicht méglich. Wenn man dagegen =O setzt, so 
bleibt trotzdem noch ein Wirbelglied iibrig. Die durch die Gleichung 
beherrschten reibungsfreien Bewegungen mit Wirbelgebieten lassen sich 
auf synthetischem Wege in beliebiger Zahl konstruieren, wenn man auf 
die Bedingung des Haftens an der Kérperoberfliche verzichtet. So kann 
man z. B. mit Hilfe des Spiegelungsprinzips eine ideale Stroémung um 
eine Kreiskontur herstellen, die einzelne Wirbel enthalt, und es ist auch 
moglich, den KinflufS dieser Wirbel auf den theoretischen Widerstand 
genau anzugeben. Aber trotz der erreichbaren Anniherung an die wirk- 



§ 71. Allgemeines. 263 

lichen Kraftverhaltnisse und trotz mancher Beweiskraft im einzelnen 
kann diese konstruktive Methode nicht als Widerstandstheorie gewertet 
werden, weil sie willkiirlich bleibt und keine zwingenden Folgerungen 
aus den Grundgleichungen verarbeitet, ganz abgesehen von dem Wider- 
spruch mit der physikalischen Erfahrung. 

Weit vollstandiger und mehr nach allgemeinen Gesichtspunkten ist 
die Bewegungsgleichung zu behandeln, falls man unter der Voraussetzung 

schwacher Wirbelung das quadratische Glied p « rot v streicht. Wenn 

der Korper sich in der Fliissigkeit mit der Geschwindigkeit wu in Richtung 

der positiven x-Achse bewegt, so erhalt man die Strémungsgleichung 

(2) P(E +50) 4 ue ty dv=o, 

in der wir zum Unterschied gegen friither das Glied v2 beibehalten wollen, 

also f durch a + = v2 ersetzen. Wir wollen sie die erweiterte Oseensche 

Gleichung nennen. Diese Gleichung hat nun eine bemerkenswerte Eigen- 

schaft, die Oseen veranlaBte, den Grenziibergang zu kleiner Reibung 

oder groBer Reynoldsscher Zahl nicht an der Differentialgleichung, 

sondern an der allgemein angebbaren Lésung durchzufiihren. Da wegen 

IE AVAY Avy = — rot roty 

wird, so ergibt sich, daB jede der beiden in (2) ausgefiihrten Substitutionen 

u=0 und rot p=0 zu demselben, Ergebnis fiihrt. In beiden Fallen nim- 

lich geht die Gleichung in die Eulersche Gleichung ftir die reibungslose 

Flissigkeit tiber. Wenn man also von vornherein in der Gleichung (2) w=0 

setzt, so kann der Fall, daB w sich der Null nahert und doch Rotation 

in der Fliissigkeit vorhanden ist, keine Beriicksichtigung mehr finden, und 

gerade dieser Fall ist der eigentlich entscheidende. Diese zunachst mathe- 

matische Erwagung wird ferner gestiitzt durch das grundlegende Re- 

sultat der Grenzschichttheorie, das sich in den bereits friiher ausge- 

sprochenen Satz zusammenfassen lift, da die Abweichung von der 

reibungslosen Strémung in der Umgebung eines bewegten Korpers um 

so gréRer ausfallt, je kleiner die Reibung wird. Es erhebt sich daher 

die wichtige Frage, ob diese Abweichung oder, anders ausgedriickt, die 

fiir das Auftreten eines Widerstandes maBgebende Unsymmetrie der Stré- 

mung aus der Lésung der Differentialgleichung (2) auch mathematisch 

erschlossen werden kann. Die Untersuchungen von Oseen!), die von 

dieser Frage ihren Ausgang nehmen, bestiitigen nun in iiberraschender 

1) Vgl. C. W. Oseen, Hydrodynamik, 8S. 211ff.; ferner Beitrage zur Hydro- 

dynamik, Annalen d. Physik, Bd. 46, 1915, S. 231, 623, 1130; Vortrage aus dem 

Gebiet der Hydro- und Aerodynamik (Innsbruck), Berlin 1924, S. 123—135. 
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Weise die anfangliche Erwartung und fithren in der Tat zu einer ,,asym- 

ptotischen‘‘ Lésung der Differentialgleichung, die sich wesentlich unter- 

scheidet von der Lésung der mit ~=0 gebildeten Eulerschen Gleichung. 

$72. Die asymptotische Lisung von Oseen. 

Im Hinblick auf den Zweck dieser Einfiihrung und auf die ausfiihr- 

liche Darstellung, die Oseen selbst von seiner Theorie in einem Bande 

dieser Sammlung gegeben hat, wollen wir hier auf die allgemeinen Ent- 

wicklungen und die strenge Durchfiihrung des Grenziiberganges zu ver- 

schwindender Reibung verzichten und uns auf eine einfache spezielle 

Darstellung, in der das Anschauliche und das Physikalische der Theorie 

deutlicher zutage tritt, beschranken. 

Wenn wir dabei die Grundgleichung 
, 

(1) —Fq+vdv+ 5 =0 

bzw. mit k= 2 die Gleichung 
av 

on 1 Obes 

(1a) (4+ 2ks\o = Fa; (a=p+ $0" 

zugrunde legen und ebene Verhaltnisse voraussetzen, so kénnen wir an die 

friihere Betrachtung ankniipfen (§ 35), die sich auf kleine Reynoldssche 

Zahlen bezog. Ersetzen wir p durch q, so kann die dort gefundene 

Loésung auch hier verwendet werden. Wir hatten die Geschwindigkeiten 

v, und v, der Storungsstromung in der Umgebung des gleichmaBig x y 

sich bewegenden zylindrischen Kérpers in der Form dargestellt 

OP 1 dy Om 1 ey On 
» = - 4 —— Vy, = = - ~ = — 

(2) hg.) eh Oy eae Oy 2k dy’ fee ee 

wobei die Funktionen ® und y den Differentialgleichungen 

‘ a (3) AD=0, (4+ 2k=—\y=0 

gentigen. Wenn man den Rotor der beiden Seiten der urspriinglichen 
Differentialgleichung (la) bildet, so ergibt sich 

ae 6, (4) (4+ 2k=)w=0, 
Cx 

Die Wirbelfunktion’ w= rot » geniigt also formal derselben Diffe- 
rentialgleichung wie die Funktion y. Um das Wesen der asymptoti- 
schen Strémung zu zeigen, erscheint es zweckmiBig, nach dem Vorgang 
von F. Noether') und Fr. Eisner?) zuntichst die Wirbelverteilung ins 

') Fr. Noether, Integrationsprobleme der Navier-Stokesschen Differentialglei- 
chungen, Handbuch der physikalischen und technischen Mechanik, Bd. 5, S. 786. 

*) Fr. Eisner, Widerstandsmessungen an umstrémten Zylindern, Berlin 1929, 
S. 50f. 
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Auge zu fassen. Mit Riicksicht auf das Verschwinden im Unendlichen 
kénnen wir, wie oben dargelegt wurde, eine partikulire Lésung in der 
Form angeben 

(5) w=ce **. Ko(kr), 

wo Ky die bekannte Hankelsche Funktion nullter Ordnung. dar- 
stellt. 

Wie man sieht, hat w nur im Punkt r= 0 eine logarithmische 

Singularitat. Ferner verhalten sich die w-Werte an zwei symmetrisch 

zur y-Achse gelegenen Punkten wie 1: ¢?”*. Es wird sich nun weiter- 

hin ergeben, dafi die dadurch zum Ausdruck kommende Unsymmetrie 

in bezug auf die y-Achse im Grenziibergang «> 0 sich dahin ver- 

starkt, dafS nur der ,,Stromschatten*’ hinter dem Kérper Rotation ent- 

halt, wahrend das tibrige Gebiet wirbelfrei ist. Bevor wir dieses asymp- 

totische Verhalten an der Lésung von (4) aufzeigen, wollen wir eine 

Folgerung aus der Gleichung (1) ziehen unter der Voraussetzung, daB & 

gegen oo und mw gegen Null gehen. Wenn dann Ap nicht unendlich 

groB wird, also keine Singularitét im Stromfeld vorhanden ist, so er- 

halt man ftir die Wirbelfunktion die Grenzeigenschaft 

(6) aa 0: 

Der Rotor oder die Wirbelstarke wird also auf Parallelen zur x-Achse 

denselben Wert besitzen; die Wirbelkonvektion trigt demnach einen rein 

translatorischen Charakter. Da aber weder im Unendlichen noch in der 

Strémung, vielmehr nur an der Oberfliche des zylindrischen Korpers 

Wirbel entstehen kénnen, so ergibt sich, daf Rotation nur innerhalb des- 

jenigen Gebietes vorhanden sein kann, das von den beiden an die Kontur 

gelegten Endtangenten parallel zur Translationsgeschwindigkeit begrenzt 

wird. Wir konnen nun den allgemeinen Ausdruck fiir die Wirbelvertei- 
~ 

lung aus dem partikularen Ansatz (5) dadurch gewinnen, dab wir an 

Stelle von x und 7 schreiben x—ay und r= V(x Xo)? + (y— Yo)? und mit 

Einfiihrung einer Belegungsfunktion y(«oyo) das langs der Berandung 

(%oYo) erstreckte Integral bilden i 

(7) eC [y(woyo)e * 0). Ko(kr)d so , 

wo noch der konstante Faktor C aus Dimensionsgriinden hinzu- 

gefiigt ist. 

Der an diesem Ausdruck durchgefiihrte Grenziibergang 4. —> 0 wird 

die in bezug auf die Wirbelverteilung ausgesprochene Vermutung durch- 

aus bestatigen. 
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Nun ist bekannt, daf fiir sehr groBe Werte k, also groBe Reynoldssche 

Zahlen, die asymptotische Beziehung gilt 

3 Ve el agile | 
Wir kénnen daher bei kleiner Reibung statt des Ausdruckes (7) setzen 

/ [he eee 
(8) w=C | 7 (woo) | ra ee Ee 

Wenn man mit / irgendeine Langenabmessung des Profils bezeichnet, so 

kann man mit Einfiihrung der Reynoldsschen Zahl ® auch schreiben 

ig = shar eh 
(8a) w= o"| +/(x0 yo) | —e dso. 

Da sich nun 2») auf einen Punkt Q des Randes bezieht, so gilt in 

jedem Falle 

Fe tytn est Ie 

wahrend ftir alle Punkte P in dem Gebiete I auBberhalb der Kontur und 

des von den Endtangenten t, und ¢, begrenzten und nach hinten (gegen 

die Bewegungsrichtung) sich erstreckenden Streifens II 2—a)+r> 0 ist. 

Da unter dieser Voraussetzung 

tim YR-e TO * tM _ 9 
R> co 

wird, so sieht man, daB die Rotation im gesamten Gebiete I ver- 

schwindet. Wenn dagegen der Punkt P im Gebiet II auf einer Paral- 

lelen zur w-Achse durch den 

ty I Randpunkt @ liegt, so wird 

Yy x—2%+r—=O0, und umgekehrt 

kann dieser Gleichung nur ein 
Ir Punkt in IT entsprechen. Nur fiir 

Punkte dieser Art wird daher 
2 das Integral einen von Null ver- 

Abb. 88. Zur Theorie des asymptotischen schiedenen Wert annehmen, und 
Widerstandes: man sieht auch, daB es geniigt, das 

Integral zwischen zwei Punkten 
@i und Q, zu berechnen, die beiderseits, d.h. unterhalb und oberhalb 
von Q auf zwei um die kleine GréBe ¢ von Q abstehenden Parallelen zur 
x-Achse liegen. Man erhialt also 

yrs x, 
i Ce fT yt 

Wo VR y(toyoe ! 0) dso 
1) 

ye i 
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wobei ¢ gegen Null konvergieren soll. Benutzt man nun die Ent- 
wicklungen 

l (y—y)? 
ra lar 20 | a= 2 a ; 

0 

= (y — Y) 
rx Va — 20 ae = 7,3 , 

a ae R (y= yo)? 
pall SAE Snot areal 

wo im Kielwassergebiet t— I —=—| x—Mo| zu setzen ist, und beriicksichtigt, 
daf bei der Integration y(x yo) und (w— x») als konstant angesehen 
werden konnen, so ergibt sich 

—.— yte R y= yor" 

pony fe Ble=el, ty WC \/; 

* cos (s 8 Yo) (~ — 2 
Pos 

R (Wi Yo 9) =— 2 

Qiigoe) 2 
zwischen den Grenzen —oo und +00 zu nehmen, wenn ® iiber alle Gren- 

zen wachst. Mit 

Setzt man so hat man das transformierte Integral 

dy=dq /* oF le - SAI 

erhalten wir also 

l= a0 foo) 

I~ y2 : Y (% Yo) fe-# dq 0 

COS(S)Y) J 

Da das Integral, das wir bereits friiher benutzt haben, den Wert 

Vx hat, so kommt 

2m (Xo Yo) . 
COS (Sp Yo) 

Das Resultat unserer Betrachtung laBt sich also dahin zusammen- 

fassen, da die Elementarrotation der Fliissigkeit auBerhalb des oben 

definierten idealen Kielwassergebietes verschwindet, wahrend sie im Kiel- 

(9) Wor 

wassergebiet einen nur von y abhiingigen, d. h. auf je einer Parallelen zur 

Bewegungsgeschwindigkeit unverinderlichen, Wert hat, der im Innern 

endlich ist und an der Kielwassergrenze unbegrenzt groB wird. Wir haben 

also auBerhalb des Kielwassers eine gewohnliche, aus einem Potential 

ableitbare reibungslose Strémung, die daher naturgemaf am vorderen 

Rand der Kontur gleitet, wihrend das Kielwassergebiet kontinuierlich 

mit Elementarrotation behaftet ist und die Kigenschaften einer zahen 

Strémung zeigt, von der wir also insbesondere Haften voraussetzen 

konnen. Nach den Ansitzen (2) muf also auBerhalb des Kielwassers 

die Funktion 7(y) verschwinden. Das laBt sich aber auch direkt in der- 

selben Weise zeigen, wie oben das Verschwinden der Rotation abgeleitet 
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wurde, da y derselben Differentialgleichung gentigt wie w, also denselben 

funktionentheoretischen Charakter zeigt, d.h. durch ein Integral von 

der Art (7) darstellbar ist. Im Kielwassergebiet ergibt sich die Wirbel- 

funktion w als Ableitung der ,,Kielwasserfunktion™ 7 zu 

I dy 
(10) eS ge 

; : 1 
Wenn wir fiir die in (2) auftretende Potentialfunktion ® + ok 4 (k— ov) 

wieder @ setzen, so haben wir im Gebiet I 

OP OP 
V2 = vv, = => 

e Og? 2 = oy? 

im Kielwassergebiet II dagegen 

Op ODP 

te oe ths WW Gy 
Die Potentialfunktion ® bzw. das entsprechende komplexe Potential 

oder die komplexe Geschwindigkeit, die wir mit V=v,—iv,. bezeichnen 

wollen, ist jetzt eindeutig im ganzen Gebiet auBerhalb der geschlossenen 

Kontur festgelegt, wenn wir verlangen, daf{ am vorderen Rand ©, der 

Kontur die Randbedingungen zweiter Art erfiillt sind, d.h. 

V1 COS(NX) + Ve COS(NY) = Uo COs(nx) 

gilt, am hinteren Rand dagegen die Geschwindigkeit v. verschwindet, 

waihrend im Unendlichen v,=-v,.—0 wird. Die erste Bedingung ist be- 

reits die endgiiltige ,,vordere’’ Randbedingung fiir die resultierende 

Strémung, die im Gebiet I mit der Potentialstrémung identisch ist 

Va=V1, Vy = ve. 

Die zweite Bedingung dagegen liefert erst durch Vermittelung der 
zusitzlichen Funktion y(y) die endgiiltige hintere Randbedingung 

Vy = 0 5 Ux = Uo. 

Da lings C 
c—) h 

gilt, so ergibt sich 

ll 1 (y) = wo — (11) X(y) = Uo | = 

Wenn wir also die Potentialfunktion ® im ganzen AuBengebiet kennen, 
bzw. die Geschwindigkeitswerte 

ast ODP Op 

ou On" ~ Oy? 
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so ist die Stroémung im Kielwassergebiet als Uberlagerung der Potential- 
stromung und der (inhomogenen) Parallelstromung V,==7%(y) von der 
Form 

OP OP 

2 Pe = Gz + to —(5,),= + wo— (ody, 
(12) Ae 

Oy) — Oy == 1h 

Man sieht in der Tat, da diese Geschwindigkeiten der Stérungs- 

bewegung des Zylinders C entsprechen, die gleichzeitig die Eigenschaft 

hat, am hinteren Rande zu haften. 

Indem wir uns die genaue Ermittelung des Stromfeldes fiir einige 

einfache Falle fiir die naichsten Paragraphen vorbehalten, wollen wir 

hier nur die einleitenden allgemeinen Gesichtspunkte durch einige Be- 

merkungen erginzen, die sich insbesondere auf den Vergleich mit der 

Prandtlschen Theorie beziehen. Wahrend Prandtl] von der ersten Ent- 

stehung der Kielwasserwirbel aus der Grenzschicht ausgeht, gibt Oseen 

mit seiner Lésung gleichsam das letzte Resultat in einem extremen, physi- 

kalisch nicht mehr realisierbaren Grenzfall: der Ablésungspunkt der 

Strémung, wenn man ihn so nennen darf, riickt in der Grenze in den 

héchsten und tiefsten Punkt des Profils, also dahin, wo im Falle der 

idealen Str6mung das Druckminimum liegt; die ganze Grenzschicht ist 

auf die Riickseite gedrangt und bildet hier mit dem Kielwasser eine 

Kinheit. Man muB aber bei dieser Gegentiberstellung im Auge behalten, 

da®B man an die Oseensche Theorie keinen strengen physikalischen Mab- 

stab anlegen darf. Die PrandtIlsche Hydrodynamik hat ihren Ursprung 

in einem physikalischen, auf Versuche gegriindeten Gedanken, der einer 

vollstandig befriedigenden theoretischen Bearbeitung nur sehr schwer 

zuganglich ist, wihrend Oseen einen rein mathematischen Grenziibergang 

unter einigen nicht ganz unbedenklichen Grundvoraussetzungen durch- 

fiihrt. Trotz mancher Bedenken physikalischer Art ist aber das Resultat 

Oseens besonders insofern iiberraschend, als damit zum ersten Male 

das bekannte d’Alembertsche Paradoxon eine gewisse Aufklarung er- 

fahren hat, und als es gelungen ist, auf mathematischem Wege der Be- 

rechnung des Formwiderstandes niherzukommen. Auch rein qualitativ 

findet man den theoretischen Verlauf der Strémung, wie wir noch an 

einem Beispiel zeigen werden, etwa durch die von F. Ahlborn fir 

gréBere Reynoldssche Zahlen hergestellten Strombilder in mancher 

Beziehung bestiatigt. Im wesentlichen zeigen die Stromlinien auch in der 

Wirklichkeit vor dem Korper nahezu den Charakter von Potentiallinien, 

und auch auf der hinteren Seite treffen sie ungefahr in Richtung der 

Bewegung auf den Rand und bilden erst an der Grenze des Kielwassers 
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gréBere zusammengesetzte und nicht mehr stationare Wirbelgebilde, die 

natiirlich von der Theorie nicht mehr erfafit werden konnen. 

Zur Bestitigung des Gesagten werden wir jetzt einige Folgerungen 

aus der Theorie ableiten, insbesondere die Druckverhaltnisse naher unter- 

suchen und dann fiir einige bemerkenswerte Spezialfalle das asymptotische 

Stromfeld wirklich aufbauen und die Widerstandsberechnung numerisch 

durehfitihren. 

§ 73. Allgemeine Formeln fiir die Berechnung der Kriifte. 

Die Druckkrafte am Profilrand sind bis auf eine Konstante durch 

die dritte der Gleichungen (2) des § 72 bekannt. Da das Geschwindigkeits- 

quadrat am vorderen Rand v? = vj + v3, am hinteren Rand v? = uz ist, 

so haben wir bis auf eine additive Konstante 

| Pr = gt? — 
| P= eur, — 

Die erste Beziehung stimmt im wesentlichen mit der Bernoulli- 

(1) 
role role e fon) > = 

2 2 2 = Pv. — 30(Uy — V, — V9). 

schen Gleichung tiberein. Wenn man namlich der Potentialstromung 

die Parallelstromung v,——wu, tiberlagert, so erhalt man die Relativ- 

stromung um die Kontur, der die Geschwindigkeitswerte entsprechen 

Vn = U1 — Uo, 

Wir haben daher Ta : ; p 
O05 Oe Rh el, Vas 

mithin auf Grund der Bernoullischen Gleichung 
1 12 ie 2 2 Py sev. = pr + ZO; + 0.) — Ou, v, — const. 

Bemerkenswert ist, daB der Druck nach dieser vorlaufigen Bestim- 
mung beim Ubergang in das Kielwassergebiet einen endlichen Sprung 
macht. Andererseits mufS§ bemerkt werden, daB die aus den linearisierten 
Gleichungen resultierende Druckbestimmung nicht eindeutig ist. Man 
kénnte daher, um einen stetigen Ubergang in das Kielwassergebiet zu 
erzielen, eine additive Konstante hinzufiigen. Setzen wir etwa 

Ph= QUyr, —ghouy, 
so ist k so zu bestimmen, daB an der Ubergangsstelle (v0) g 

ku = (vt + v§)g = v3 
wird, woraus v2 

g 

we 

folgt. Wir werden zunachst die Kraftebestimmung ohne Riicksicht auf 
diese Konstante durchfiihren!). 

1) Vgl. C. W. Oseen, Hydrodynamik, S. 292 ff. 
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Dann erhalt man fiir die Druckresultierende in der x-Richtung, wenn 
C die Kontur, C, den vorderen und C,, den hinteren Rand _ bezeichnet, 

Pe= — ppody + 3¢ |(us — vi)dy, 
C Ch 

da v2 langs C,, verschwindet. Wenn wir 

00 
J=0 Jo. dy —v,dxz) =o fv. 5 ds 

CG C 

subtrahieren und addieren, so kommt 

| (v1 — tv2)?dz +30 (ui —vi)dy, 

5 - ae é 
Pz= — gu | mdy tefrsidst+Ry 

a Cc 0 Ch 
Cc 

wobei #& den Realteil des nachfolgenden Ausdruckes bedeutet. 

Der dritte Ausdruck verschwindet, da v,—iv. eine auBerhalb C 

regulare Funktion von z ist. Beachten wir ferner, da ae langs C’, durch 

Uo COS (NX) zu ersetzen ist und dak v, langs C, verschwindet, so heben sich 

simtliche lings C,, erstreckten Integrale auf, und es bleibt schlieBlich 

mike Che = (0) 
1 oe 

(2) Pr=— 70 | (uo — v1)? dy. 

Ch 

Es entsteht also jedenfalls nur ein positiver Widerstand. Dai er wesent- 

lich von der Energie der Wirbelschleppe abhangt, sieht man sofort, wenn 

man. beriicksichtigt, daB 

Uo — (vi)h = x(y)- 

Es ergibt sich, also der Ausdruck 

(i ae 
(2a) P= — 30 | dy. 

Der Widerstand ist also verhaltnisgleich dem tiber den 

Querschnitt des Kielwassers erstreckten Integral des Qua- 

drats der Kielwasserfunktion y(y). 

In derselben Weise kann man den ,,Auftrieb“, d. h. die senkrecht zur 

Bewegung gerichtete Druckkomponente, berechnen. Man hat zunichst 

1 

Py=— f pods cos(ny) = — 9 @ [(u? —vi)dz. 

(G6) Oh 

Addiert und subtrahiert man 

; 5 GED 
g| v2(v2da — v, dy) = — 0 Ju.5—ds, 
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so ergibt sich, wenn man wieder bedenkt, dab 

f (v1 — ive)?dz = 0 

wird, und wenn man die Zirkulation 

p (ida +udy)=I 

eintihrt, 
5g ey he Wis é 

(3) Py = 0% Il — 3 8 | (u5 — vi) da. 

Ch 

Der erste Bestandteil ist der Joukowskysche, mit der Zirkulation I’ 

und der Geschwindigkeit wo verhaltnisgleiche Auftrieb. Der zweite Be- 

standteil rihrt von der Saugwirkung im Kielwassergebiet her. Er laBt 

sich wieder durch die charakteristische Funktion 7(y) darstellen. Denn 

wir haben auf der Riickseite der Kontur 

us = vi = (uo — V1) (uo + v1) = %(y)[2 vo — x(y)]; 

: dy : 
setzen wir also da= y so erhalten wir 

y 

dy z(y)dy 
y y' (y) 

, 1 ; 2 
(3a) Py = 0uT — euo | sae) =P ra 0 | x (y) 

Ch Ch 

Die beiden letzten Integrale erhalten besonders dann eine einfache o 

Form, wenn 7’ konstant ist, d.h. im Falle der ebenen Platte. 

Hat der zylindrische Querschnitt oder die Kontur eine zur Bewegungs- 

richtung parallele Symmetrielinie, die dann als 2-Achse angesehen wer- 

den kann, so verschwinden offenbar simtliche Ausdriicke auf der rechten 

Seite, also auch die resultierende Seitenkraft. 

§74. Charakterisierung des asymptotischen Potentialproblems. 
Das Poissonsche Integral. 

Unsere nichste Aufgabe wird darin bestehen, das im § 72 charakteri- 
sierte Potential fiir einige Spezialfalle wirklich aufzustellen. Wie bei der 
gewohnlichen Potentialstr6mung liuft die dabei anzuwendende Methode 
darauf hinaus, das subernall der Kontur C= C+ ©), gelegene Gebiet der 
Ebene auf das Gebiet auBerhalb des Einheitskreises él 1 konform abzu- 
bilden, so daB die Grenzpunkte zwischen C, und C,, den beiden Punkten 
z=-+7entsprechen. Es handelt sich zunachst darum, eine auBerhalb CO 
regulare analytische Funktion 

V1 — 102 = V (2) 

zu finden, die folgende Randbedingungen erfiillt : 
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1) an C,: v1 cos(nx) + v, cos (ny) = uo cos (nx) 

(1) 5 2) an C,: ve =0 

| 3) fir z> OO: 1 =v =0. 

Durch eine konforme Abbildung der geschilderten Art kénnen dabei die 
Richtungskosinus als Funktion der Kreispunkte e’”, d.h. als Funktion 
der Amplitude ?, dargestellt werden. 

Setzen wir 

cos(nxz)=6b(9), cos(ny)=a(), uocos(nx) = c(.9) 

und fiihren statt v;—7v, die mit i multiplizierte Funktion 

t(v1 —tve) = ve +in = F(z)=A+iB 

ein, so kann die Potentialaufgabe jetzt foleendermafen formuliert werden: 

Gesucht ist eine auBerhalb des Kreises z —1 regulare analytische Funk- 

tion f(z)=A-+76, die auf dem Kreisrand der Bedingung geniigt 

(la) a(A)A(I) +609) BCA) = (9), 

wobei fiir = Ze 5 die GréBen a, b und ¢ die Bedeutung (2) haben, 

a7 ferner fiir | LW 5 die Beziehungen 

Go) ee 07) 10) 10) 

gelten, wahrend im Unendlichen A und £6 verschwinden. 

Dieses Randwertproblem laBt sich auf folgende Hilfsaufgabe zurtick- 

fithren. Es soll eine analytische Funktion gesucht werden, die innerbalb 

bzw. auBerhalb des Hinheitskreises regular ist, und deren Realteil bzw. 

Imaginiarteil auf dem Kreis bestimmte Werte annimmt?). 

Wir setzen fiir die Funktion eine Potenzreihenentwicklung 

Tig) = Go a 12 a (cn + tn) 2” 

an, die fiir Iz| <1 konvergieren mége, und lassen die Méglichkeit zu, daB 

f(z) auf dem Kreise Unstetigkeitsstellen besitzt. Dann wird mit 

z=e'F = cost +i sind 
o.2) 

f(e?*) =a + > (an cosn F— Prsin nY) +t] Po + > (om sin 2+ Prcosn)| . 
1 1 

Ist nun der Realteil p(#) gegeben, so haben wir bekanntlich fiir die 

Koeffizienten dieser Entwicklung die Beziehungen 
27 27 

1 i 1 ; « € eC 

ho = a pads, Cn = =| p(A)cosn Ids, 

0 0 

1 He © 0 (4 (4 Pn=——| p(d)sinn Idd, 
0 

1) Vgl. etwa H. Villat, Lecons sur L’Hydrodynamique, Paris 1929, S. 9—12. 

Miiller, Theorie der ziihen Fliissigkeiten. 18a 
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27 
daher ae ; ve 

ao =5-| p(I)AI+ iBo; an=— z — | p(He-m odd. 

Die Funktion f(z) kann daher in der Form dargestellt werden 

20 Qn ie 

ye) 1 ; Cc C ] iP 71Q) ? Fag F 

f=iPoty [| pid+— | ff (D>
 wre ind dD. 

0 
0 1 

Fir z| <1 hat man aber 

- SOS Ee 4 
1 

also 
27 

) 1 ay eC i 

(2) f@)= Bo +5—| p()7—, -as 4- 

Die im Innern des Kreises definierte Funktion f(z) ist also durch den 

festgelegten Verlauf des Realteiles auf dem Kreis bis auf eine imaginare 

Konstante bestimmt. Wenn g denselben Wert annimmt fiir zwei in 

bezug auf die reelle Achse symmetrische Punkte, so ergibt sich das 

Poissonsche Integral?) 
aU 

(2a) (= |) 
0 

1-2 ee ee 
1 —2zcos% + 2? 

Um die entsprechenden Satze zunachst formal fiir den Fall aufzu- 

stellen, daB die Funktion im Gebiet auBerhalb A regular ist, k6nnen wir 
: Ais 1 BAe 

den reziproken Wert von z als neue Variable z’=— einfiihren und —#’ 

statt J? setzen. Wir erhalten dann in 

: lpn lageses 
(3) F@=— al D(A) at 

0 

den Ausdruck fiir diejenige Funktion, die fiir 2 > 1 definiert ist, und 
deren Realteil auf AK den Wert g(%) annimmt. 

Multipliziert man ferner mit i, so gibt 

if Qi seeie ee (4) GQ) = — 5 | w(%) a 

diejenige Funktion G(z), deren Imaginiirteil fiir 
annimmt. 

I e’” den Wert (0) 

‘) Vgl. auch Riemann-Weber-Frank-v. Mises, Die Differentialgleichun- 
gen und Integralgleichungen der Mechanik und Physik, I, 2. Aufl. Braunschweig 
UCBL, tS R32) 
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Wir werden im folgenden von der Voraussetzung ausgehen, dab die 

Loésung unserer Randwertaufgabe durch den Ausdruck von der Form (3) 

baw. (4) darstellbar ist und verweisen im iibrigen auf die einschlagige 

mathematische Literatur!). 

§75. Lisung der Randwertaufgabe fiir den Kreis. 

Nach diesen Vorbereitungen wollen wir jetzt die gesuchte Geschwindig- 

keitsfunktion v;—7v, fiir den Kreiszylinder aufbauen. Zunachst bilden 

wir eine Funktion G(z), deren Imaginarteil auf dem vorderen Rand 0, 

des Kreises den Wert 

: 1 a—wtb 1 sin + — 7Cos 1 BiG, aff HE 
v <= OL ye ae —— x = = ] — ou ==) | — ) wy ean ree eee cca | as 

annimmt, wahrend langs des Hinterrandes w(%#)=0 sein mége. Dann 

erhalten wir nach § 74, (4) 

7 oi 

+2 + 

a 7 Gre ee ane! oa, ae 1 ani al 1 ; 

G@=—5-] (4 SA searer. ; SN lee oe 

Setzt man z=e’”, so findet man fiir den Realteil dieser Funktion 

+2 
"é C 1 ; 7 or a HY ar (3) p%=57](5 = I \etg 5 dy . 

Nun ist 2 
+— 

pe ae ey Ne | &  x\| 
i etg 3 di} = 2lg ote( 5 —+) 

Daher erhalten wir 42 

é C 1 wo 7t | 1 ; x oe — HW Oo! (3a) (I) => le cta(5 —4)|-5_ / ote as". 

Fiihren wir die transzendente Funktion 

Us 

{= | tetg tdt 

0 

1) Vgl. H. Villat, a. a. O., und H. Schmidt, Aerodynamik des Fluges, 

Leipzig 1929, S. 88 ff. 
Ss 



276 Elemente der Oseenschen asymptotischen Theorie des Widerstandes. 

ein, so lABt sich der Ausdruck fiir p(#) auf die Form bringen 

aa (3b) gp =(5—=)igete(S —F) +3 

Bilden wir jetzt die Funktion 

Te) =ee ee 

so sieht man, da® J’(z) auf dem Randteil C, des Kreises die Werte an- 

nimmt 

pri (S- °) ae 
ao > P(e) =e 

also die mit 7 multiplizierte Funktion iJ’ die Werte —e’~'". Setzen wir 

i=A,+iBo, so geniigen 4)= —e’ cos 7? und By = e’ sin @ im Intervall 

5 > o> + = der Relation 

ado +b Bo =0. 

Fiir den Randteil C,, d. h. ftir = a ade , nimmt J’ dagegen den 

Wert e’ an, oder es wird hier as ; 

Um die Lésung der homogenen Relation 

(4) aAyp + bBo =0 

zu erweitern, kann man i/’ mit einer Funktion H(z) multiplizieren, die 

die Eigenschaft hat, auf A reell zu sein. Wenn H auf K stetig ist und 

der Imaginarteil tiberall verschwindet, so reduziert sich H auf eine Kon- 

stante. Dieser SchluB ist dagegen ungiiltig, wenn eine Diskontinuitat 

vorhanden ist. Verlegen wir diese in den Punkt z=—7, so kénnen wir 

die konforme Abbildung 

—% Pe = AP Gy = Gia) 

+4 z 2 | : 

austithren, durch die das Auffere des Kreises auf die positive ¢-Halb- 
ebene und der Kreis selbst auf die reelle Achse abgebildet wird. 
" es : a : : 7 . : Denn fiir einen Punkt des Kreises ist gi—q2= +. Eine analytische 

= 

Funktion von ¢ 

KQ=K(i-5{)=H@) 

hat dann in der Tat die Eigenschaft, fiir die Kreispunkte reelle Werte 
zu geben. 

Dann geniigt aber die Funktion 

tT(z)- H(z) 
der homogenen Relation (4). 
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Die verlangte Losung der inhomogenen Gleichung 4a+ Bb=c ge- 
winnen wir nun, wenn wir zu der Loésung der homogenen Gleichung eine 
partikulare Lésung der inhomogenen Gleichung hinzufiigen, in der Form 

Jae Gt a be 

Eine solche Lésung der inhomogenen Gleichung ist aber, wie man so- 

fort erkennt, 
F — 1Uo . 

Wenn wir jetzt noch 
.7 2-4 

H(z) = fy + 7 ke Fag 

setzen, so haben wir nach Division mit 7 als Ausdruck fiir die komplexe 

Geschwindigkeit der gesuchten Potentialstrémung 

Z+t Sg tiv ce 06 ()(Iy + ket -—"), 

der nur noch der Bedingung im Unendlichen angepaBt werden muf. 

Nun ist aber 
7 mu 

aes = 

Ce == Se ay ere 
= sll +) he sei Pep ae 

wt 7 

~ 8 “2 

Da V fiir z=o0 verschwinden muB, so ergibt sich 

uote * (kx + the) =0 
oder , 

ky +tke = — 7 (L==4); 

also 
| eps ay ta Pram ge 

y2° oy 

Es entsteht daher die endgiiltige Losung 

; eG (2) 2-0 
(5) V= 01 — ity = wo] — ice (1s i) 

die zuerst von Zeilon!) unter Benutzung von Hilberts Theorie der 

Integralgleichungen angegeben wurde. Wenn der Radius des Kreises 

gleich a ist, so erhalten wir 

\ 1 ¢(— 2a 
(5a) Voll — se fal fi a8) ‘ 

Daraus laBt sich dann durch Hinzufiigung der Kielwasserstr6mung die 

endgiiltige asvmptotische Stromung konstruieren. 

1) N. Zeilon, On Potential Problems in the Theory of Fluid Resistance, 

Kungl. Svenska Vetenskapsakademiens Handlingar, Bd. 1 (1924), S. 27f. 

Miiller, Theorie der zihen Fliissigkeiten. 18b 
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§ 76. Widerstand eines Kreiszylinders. 

Wenn wir unter G(#) den im vorigen Paragraphen angegebenen Real- 

teil von G ( verstehen und beachten, da& der Imaginirteil am vorderen 
a 

Rand gleich [5 _ a) und am hinteren Rand gleich Null wird, so finden 

ere i 1 ae ee ee es ¢ iw 
wir fiir den Vorderrand (- ar O< a des Kreises die komplexe Ge 

schwindigkeit hits 

he ade eee 2 
(1) v1 —iv2 = Uo pp ee 14 5 " . 

4 

also sin # : 4 1 ve == wo|1 — SE e-(1— ote (5 + 4) 
(la) a o HEN Benen ly G Gian je TLS es eames so (1 Cialeeae ye IE 

fiir den Hinterrand (- zie Vice | dagegen 

(1b) 
Oy — 02 — OF 

Fir die Kielwasserfunktion haben wir daher nach § 72, (11) 

1 aa ote (> eee ] ° 
Mice es 

(2) %(y) = Uo — (v1), = 2 er 

Der Widerstand kann mit Hilfe dieser Formeln und der in § 73 ge- 

gebenen allgemeinen Ausdriicke fiir die Drucke an ©, und C) nur auf 

graphischem Wege ermittelt werden. Mit Hilfe der von Zeilon berech- 

neten Werte fiir die Funktionen 
a 

(9) 
4 

(9) ‘ C m 

{A= = | Kete de und otg ( ; + Feo 

0 

erhalten wir dann die in der Tabelle 2 angegebenen Verhiiltniszahlen 

Upend, WY 
Oy Oy SOO 

Um den an der Wirbelgrenze mit den Oseenschen Werten ein- 
gefiihrten unstetigen Druckverlauf zu vermeiden, hat Zeilon fiir den 
Kielwasserdruck, fiir den sich aus den linearisierten Gleichungen keine 

eindeutige Bestimmung ergibt, den Wert eingefiihrt 

Ph = 0 Uo Ve(P) — 0,086 0U% , 

der sich von dem frither gegebenen Oseenschen Wert nur durch eine 
Konstante unterscheidet. Um einen iibersichtlichen Vergleich mit der 
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Tabelle 2. 

g9 Vy jf j2 Pp P 

m Ug Uy Py tou Prorr 

0 | 1,000 1,000 | 1,000 
9 0,954 0,914 0,914 

18 0,836 0,720 0,720 
27 0,635 0,358 0,358 
31,5 0,512 0,120 0,120 
36 0,387 | —0,086 ~ 0,086 
45 0,127 | —0,524 — 0,524 
54 — 0,130 — 0,948 — 0,948 
638 | —0,344 — 1,270 } —1,270 
72 ~ 0,493 ye ~ 1,450 
S09 0.5310) 00 eet 300 
90 — 0,414 ~ 1,000 | 

| ASD | aie 
99 =O275 | U2e — 1,550 = (70m 

108 — 0,216 1,216 — 1,432 — 0,604 
iLily/ —0,181 1,181 — 1,362 — 0,534 
126 20.159 1.159 _1318 — 0,490 
135 ~0,144 1.144 _ 1288 — 0,460 
144 —0,131 Psi — 1,262 — 0,434 
153 — 0,126 1,126 — 1,252 — 0,424 
162 ~ 0,120 1.120 — 1,240 — 0,412 
180 —0,117 7 — 1,234 — 0,406 

Erfahrung zu erméglichen, haben wir in der Abb. 89 den Druckverlauf am 

Zylinder in Abhangigkeit von ? aus verschiedenen Messungen, und zwar 

eof = 

135:10° 

<110:10° 
(1924) 

=| 

ie 

Abb. 89. Druckverteilung an der Oberflache eines umstrémten Kreiszylinders. 
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sowohl nach der Potential- wie nach der asymptotischen Oseenschen 

Theorie graphisch dargestellt. Auf die in dieser Zeichnung aufgenommenen 

Druckwerte, die im AnschluB an Fr. Eisner mit Zeilon I, II, Ill be- 

zeichnet sind, werden wir an spiterer Stelle noch zuriickkommen. Ferner 

ist der Verlauf der versuchsmaBig bestimmten Widerstandsbeiwerte 

W 
Cw = eo eee 

in Abhangigkeit von der Reynoldsschen Zah] in logarithmischer Auf- 

tragung in der Abb. 90 wiedergegeben, und zwar fiir mittlere und groBe 

Reynoldssche Zahlen, nachdem bereits an friherer Stelle ($ 35, S. 132) 

der Bereich kleiner Reynoldsscher Zahlen berticksichtigt worden ist. 

2 Sj ————__—— 
| | 

ee ana re ea —— 134 (Zeilon) 
10. ae eee bie As Se 7 
Anieatarergizess: <2 “Zax. » Giitingen 

at | pare | 
ae | fae eS 0,503 (Zeilon korr,) 
3} T : | = (Berle |. zy —— 648 (Zeilon 1) 

: 
JR \—— 0,388 (Zeilon I) 

3 = he See 
Gy | | ‘ 

ta | at, | | [/-—4228 (Zeilon I) 

} | | | 

ee Sree eet -——— 
v/ 2 3 4567891" 2 3 456789105 2 3 4 567890% 

Abb. 90. Widerstandsbeiwerte eines Kreiszylinders bei mittleren und grofen 

Reynoldsschen “Zahlen. 

Der Abfall der Widerstandskurve erstreckt sich von R=0O bis zu dem 

bei R= 2-108 liegenden Minimum c, ~ 0,92, das etwa dem Wert ent- 

spricht, den v. Karman unter der Annahme eines aus einer doppelten 

WirbelstraBe bestehenden Kielwassers bestimmt hat. Bis zu ® «~ 2-104 

findet dann ein Anstieg des Beiwertes bis cw=1,2 statt, dem sich ein 

plotzlicher, etwa bei 2 -10° beginnender Abfall auf einen Wert ce, ~ 0,34 

anschlieBt. Bei weiter wachsender Reynoldsscher Zahl vergréBert sich 

der Beiwert langsam und angenihert linear. Wenn man bei der theoreti- 

schen Berechnung den zunachst von Oseen angenommenen unstetigen 
Druckverlauf zugrunde legt, so ergibt sich der Widerstandsbeiwert 

Cy = 1,314, 

der erheblich zu groB ausfallt. Der von Zeilon auf stetigen Ubergang 
an der Kielwassergrenze korrigierte Druckverlauf (Bxo:) liefert den 
Beiwert 

(Co)corr = 0,48 ? 
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der bereits den fiir hohe Reynoldssche Zahlen gemessenen Werten sehr 
nahe kommt. Uber die weiteren Verbesserungen, die auch von Zeilon 

herriihren, soll an spaterer Stelle berichtet werden. 

$77. Bewegung einer ebenen Platte. 

1. Das Problem der translatorischen Bewegung einer ebenen Platte in 

einer Richtung, die mit der Ebene der Platte den Winkel a bildet, kann 

durch die konforme Abbildung 

(1) eae ae (2-5), z— aeia eS 
ere Gj? 2ade  \Ze4 

auf die entsprechende Randwertaufgabe fiir den Einheitskreis in der 

Z-Ebene zuriickgeftihrt werden). Die fiir das erzeugende Potential mab- 

gebende Funktion G lautet in diesem Falle nach § 75 

+2 
Ciel 1 F 

(2) GZ) = ap Name re. 

Poy 

und wir erhalten daraus 

. -i-/Z+4i\-- 
— p& ey 2 ess we (3) Tet ge eat 

Man sieht dann, da’ die Funktion 

., Z2-t FQ) =iwo +i0@) (ha + ike 7, 

die geforderten Randbedingun- 

gen erfillt. Damit im Unend- 

lichen F(Z) verschwinde, muB 

d ——— 

Be a 

hy = — Uo Se 5 ke = Uo GOS 5) = : ee 

werden. Daraus entsteht dann 

an moma Epec yr mcigeet Abb. 91. Zur Theorie der Str6mung um eine 
fiir die primaire Potentialstré- apie 

mung in der Umgebung der 

Platte, dargestellt in den Koordinaten der Z-Ebene, der Ausdruck 

a Z—*! aia) . 
2Z4+4 J 

. . (64 . 

V1 — 1V2 = Uo il —e %% sin 2 COB 

1) Vgl. N. Zeilon, a.a.O. 8. 19f. 



282 Elemente der Oseenschen asymptotischen Theorie des Widerstandes. 
a 

Wenn wir wieder z einfiithren, so erhalten wir 

(eg iC ls | 

5 a aeie — z\27 A a (aee—zZz 27 2. x 

(4) v1 —tv2 = Uo \! — e@~ *“ | 608-5 las z ; —sin> Fae z 5) | 

ous a a iD 

| Ij a (2—aeia\2n .. @ (/z—aere 2m 2 |. 

(4a) V1 — 1V2 = Uo | a=7€ 2 |cos 2 eae! +2s1n ) Ge aca) || 

Um das Verhalten der Geschwindigkeitsfunktion im Unendlichen zu 

é ] zi. 
untersuchen, entwickeln wir nach Potenzen von —. Wir erhalten dann 

fiir die ersten Glieder 

eA = 1-6 '# eos (12 8" +.) pésin $(1— SE), 
7 z 70 z z 

Die konstanten Glieder heben sich fort, und es bleibt 

“ 

a =e ] . | 1 ain a a 
a = COS (Oars a Cc — sin @ : 
| 70 2 2 v A—-‘tB 

Uo ). SEs z Zz 

Das Strémungsfeld hat also im Unendlichen den Charakter einer Spi- 

ralstrémung, die als von einer Quell- und Wirbelverteilung auf der Platte 

erzeugt gedacht werden kann. Die Gesamtergiebigkeit der Quellen 

ist Q=224, die der Wirbel [=228. Die Zirkulation hat den normalen 

Drehsinn, wie er in der Tragfliigeltheorie benutzt wird. Bei kleinen An- 

stellwinkeln a nimmt die Zirkulation angenaihert den Wert J’=2 sina, 

also die Halfte des von Kutta-Joukowsky benutzten Zirkulations- 

wertes an. Da die aus den Auftriebswerten zu entnehmende wirkliche 

Zirkulation etwa 70° der Kuttaschen Zirkulation ausmacht, so betragt 

die von Oseen berechnete Zirkulation etwa 2 des wirklichen Wertes, 

sie kommt also der wahren Zirkulation jedenfalls um 4 ihres Betrages 

niher als der Kuttasche Wert. 

Wenn der Anstellwinkel wiachst, so wird auch die Zirkulation gréfRer, 

bis sie bei dem Winkel a= 40° 45’, der der Gleichung 

gentgt, ihr Maximum erreicht. Von da an fallt die Zirkulation bis auf 
7 + 3 1 é den Wert Null, der dem symmetrischen Fall a=-> entspricht. 

2. Um das gesamte Stromfeld zu konstruieren, kénnen wir entweder 
von dem Vektorfeld der Geschwindigkeit ausgehen oder aber die Strom- 
funktion berechnen. Indem wir uns im allgemeinen Fall auf die erste 
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VV oO sehranic 1 r . nar . . . service Methode beschranken?), wollen wir zur Trennung der Real- und Imaginar- 
teile die Substitution machen 

2— geie fs ace 
—— " e*(P1 — P2) — J et W 

z+ aeie ites j 

wo A das Verhialtnis der Radienvektoren nach den Endpunkten der 
Plattenspur und y den von ihnen eingeschlossenen Winkel bedeuten. 
Dann erhalten wir 

(eg K a 1 
V, OES Wa « ee Be nae 1 a == = 4 27 1 Q 27 2a —- == 1 — cos A cos (4 — ©) — sin eee sin|-5 + wW(>— > 

(4b) Uo 2 ei 2 2 2 2 27 
a a 1 

Vo (nme &_ filbogs & a @ n= ct / | G7 \ 
4 = cos —— 42 sin | _— — sin--A2* 2cos Ne : to 2 al Up cos|> +¥(5—9,) 

Fir alle Feldpunkte, die auf der ,,Vorderseite‘‘ der Platte bzw. deren 

Verlangerung liegen, ist yw negativ; fiir alle Punkte der Kielwasser- 

seite dagegen ist y positiv zu nehmen; fiir die Punkte der Platten- 

spur z= + ye’ wird y=0. Insbesondere erhalten wir fiir die vorderen 

. 4 

Randpunkte mit y=—a und | N= Yl <a 
s1n «& 

a a 1 
« a—n\5> nee ots =a) Nae = 

(v1)»= Uo |1— cos cose =p + sin cose ——|2% 2/—y+cosa-y, 
2 a+n 2 a+n : 

(4c) \ f = 

a 1 : 
es : A Me (Slax 2 a (a— "lea : = 
Ve)y = Uo SIN | SIN 2a 2 — cos > =F tp SLNCe> 9 
zu ° WD Wiis r 2 i = 97) v X> 

fiir die hinteren Randpunkte mit y=-+ 2 

i @ ; (eg 
a (A—n\5— Sos (C0 77) Vesey 

= Wl — cos (ee — sin 5 (2 “ia 4 |= Uo —4 (4d) - (vi)h = Uo pear op ies 3 = 

vo), = 0. 

Von den beiden eingefiihrten Funktionen bestimmt die ,,hielwasser- 

funktion 7 die Verteilung der Kielwasserwirbel und die ,,Gleitfunktion‘: 7 

die Gleitgeschwindigkeit der Fliissigkeit auf der Vorderseite. Die Funk- 

tion y hat tiberall positive Werte, wihrend 7 auf dem einen Teil der 

Platte positive, auf dem anderen Teil negative Werte annimmt (Abb. 92). 

Dem Nullpunkt der Gleitfunktion entspricht der vordere Staupunkt der 

Relativstromung. Ausrechnung ergibt fiir die Lage dieses Punktes 

n=acosa. 

Mit Hilfe der Ausdriicke (4b) haben wir nun fiir zwei Werte von a 

(60°, 9°) fiir je etwa 50 Punkte die Geschwindigkeitsvektoren kon- 

struiert, insbesondere auch die Geschwindigkeitsrichtung am Vorder- 

rand der Platte, den die Stromlinien in Aquidistanten Punkten treffen, 

4) Vgl. auch Wilh. Miiller, Ingen.-Archiv, Bd. II (1931), 8. 415—427. 
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Abb. 92. Kielwasser- und Gleitfunktion der Oseen-Stromung 

um eine ebene Platte fiir verschiedene Anstellwinkel. 

und danach dann die Strombilder entworfen (Abb. 93, 94). Bei der 

Auswahl der Punkte auBerhalb der Platte wird man zweckmabig vier 

ausgezeichnete Ortsgeraden bevorzugen, die Grenzen des Kielwassers 
‘ 1 Pn ee 

(A= sin y + cos y, bzw. = sso. die Verlingerung der Platten- 
cos w — sin w 

spur (y=0) und deren Mittelsenkrechte (A=1). Ferner lassen sich zu 

jedem Punkt drei Spiegelpunkte in bezug auf die beiden letztgenannten 

f 7 \ \ ] 

\ 
| 

/ | 

\ / 

Abb. 93. Absolute Oseen-Strémung um eine ebene Platte mit « = 60° (u>0). 
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Geraden hinzunehmen, fiir die entweder der Winkel wy sein Vorzeichen 
andert oder das Radienverhaltnis 2 in den reziproken Wert iibergeht. 
Die Strémung im Kielwasser ergibt sich durch Hinzufiigung der Ge- 
schwindigkeit (une = x alk = Ve . 

Wir erhalten dann im Gebiet II die resultierenden Komponenten 

(vat =ui+yz, (vy)ir=ve- 

Abb. 94. Absolute Oseen-Stromung um eine cbene Platte mit «= 9° (w—>0). 

Die auf diese Weise gewonnenen Bilder zeigen einen Verlauf der 

Strémung, der mit der Beobachtung manche Ahnlichkeit besitzt, wie 

die beigegebenen Zeitaufnahmen der Absolutstromung von Ahlborn 

(Abb. 95, 96) bestatigen mégen. Man sieht vor allem die spiralige Natur 

der Stromlinien und die deutliche Einwirkung der Zirkulation in dem- 

selben Sinne, wie sie bei Tragfliigeln in die Erscheinung tritt. Wahrend 

diese Zirkulation bei a ~ 40° ihr absolutes Maximum hat, wird ihr rela- 

tiver Wert, d.h. ihr Verhaltnis zur Quellstarke, also 

‘ipa oe eee sina | — > 

(6) we ae \" 
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a 

Abb. 95. Absolutstr6mung um eine ebene Platte mit « = 60°. 

(Nach Ahlborn.) 

Abb. 96. Absolutstr6mung um ein Tragfliigelprofil mit « = 9°. (Nach Ahlborn) 
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mit abnehmendem Winkel a immer gréBer und erreicht in der Grenze 
den Wert i m 

Cee 2° 

Der Grenzwinkel der Stromspiralen im Unendlichen mit dem Strahl 
durch den Anfangspunkt betrigt also 57,5°. 

Die Abweichung des theoretischen Stromlinienverlaufes von der Wirk- 
lichkeit ist besonders darin begriindet, daB die das Kielwasser begrenzen- 
den Diskontinuitatsflachen nicht bestehen bleiben, sondern eine starke 

Abb. 97. Schematisches Bild der wirklichen Stré6mung um eine Platte. 

(Nach Ahlhorn.) 

Umbildung in der Weise erfahren, daB sich groBere individualisierte 

Wirbelkomplexe absondern, die eine Kigenbewegung ausfiithren innerhalb 

des mittleren stationaren Hauptstromes. Im ganzen wird jedoch der 

Stromlinienverlauf richtig wiedergegeben. Man kann sogar mit einer 

gewissen Berechtigung sagen, da das Oseensche Strombild durch bloBe 

Deformation in das schematische Bild der wirklichen Strémung (Abb. 97) 

verwandelt werden kann. Wenn man gleichzeitig die Wirbelreihe in ent- 

sprechender Weise aufteilt, so sieht man auch, wie sich die Karmansche 

WirbelstraBe in das System der Stromlinien einordnet. 

» * dee JU 

§78. Berechnung der Stromfunktion fiir den Fall e= z- 

Der besondere, durch a=% gekennzeichnete Fall bietet natiirlich 

nach Aufstellung der allgemeinen Formeln keine Schwierigkeiten. Wir 

wollen uns aber trotzdem mit ihm etwas eingehender beschaftigen und 

dabei Gelegenheit nehmen, einige ergiinzende Rechnungen') durchzuftihren, 

35. 1) Vgl. Wilh. Miller, Ingen.-Archiv, Bd. II (1931), 8. 20 
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die im allgemeinen Fall einen recht umstandlichen Charakter annehmen. 

Insbesondere eignet sich dieser Spezialfall, die geometrische Vorstellung 

des Strémungsfeldes in der Umgebung eines symmetrischen Kérpers zu 

2 : : : 5 . : ° x 7U : 

vervollstindigen. Die Geschwindigkeitsfunktion nimmt fiir a= > die 
a 

einfache Form an 

(e524) ‘}. 
Fiir die Kielwasserfunktion und die Wirbelstirke im Kielwasser ergeben to) 

(1) V1 — 1Vy = Uo pte 
oa he 

sich die Ausdriicke 
1 1 

ay es ae) ee oe 
2) UY) = 5 beer ler : 

(3) i ee ua Jat+y—la-y 

DOG — aa eS y 4] “2 (a? = y?) i 

Aus der Funktion y(y) gewinnen wir nun weiter die Stromfunktion Y, 

der Kielwasserstr6mung 
Pr = fydy. 

Zur Ausftthrung der Integration setzen wir 

aot ee Sa-18 
Gag. ee 1 (Ee ae 

Dann wird 

: cell ; 7 ‘ 1 
a—y\' a T Yaty\* ta? = dy = — 8a] -_—,,dt; au =—8 —- Weer [cee t®? lag) Y= = Bae 

und die Auswertung ergibt 

EON T i y2t 1 Latj2e 
| (+e al +24) 7 Byg REO (Byers 16) 2 logs 1/94 a 
cdr ne 1 V2r I 1+ry/2+ 7? 

I dem? 404¢7 8)2 7° Ue l6/—g 2—1yo ea? 

Wir erhalten daher 

oa i dl 
(4) Pe = — V 2au |- are tg — 

2 : 
\ TAS 6G nrarigar yep ot, a * Etwas schwieriger gestaltet sich die Berechnung der Stromfunktion 

der Potentialstrémung au®erhalb des Kielwassers. Setzen wir 

z—ta = 87acs fr - 

eS ae re ae dc, 
so wird ie Be 

2-204 te + 
C=] | : — Se i I Le Vetta ta \7 a — aretg¢ — 3 logy =) 

z2+ta 263 lec 
— Pie 2 ‘ ts Oz | soe e ate ie ae aretgl + 5 logy | 
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Dann ergibt sich 

D+i¥ = (Vdz=w2 z+ nee ot Gee ee 
» = 
“ 

Wenn wir die Ausdriicke fiir ©, und Cs in ihre reellen und imaginiren 

Bestandteile zerlegen, also setzen 

O1=A,+7b, Cy = Ao +7Bo, 

so ergibt sich fiir die Stromfunktion Y der Ausdruck 

pee +4 Stes: 
“ 

Es kommt also zuniichst darauf an, den Realteil der Differenz C,—C, 

und den Imaginarteil der Summe (C,+ Cy zu bilden. Nun haben wir 

boa 1+¢ 
(C1 — C2) = 27 ne ilog, t? 

1 a ig 5) os & f-74 
(Cy + C2) = 27 a erarcto 6 = 27-——. — lox 

= 4 il (S= a 1§ spi 

Setzen wir 
== oe” 

’ 

so wird 

g 0 sin w Ib — 0 ie ) cos w(l — 0? al as : pe g 
(eae 1420? cos2w + 04 (= 2 ~ fe 20? cos 2 w +o! 

T+ 0 Sin w 0 sin w 
= an are te -—— 

J logy —€ is Cabrera Yb 21 ocosw’ 

C44 1+osina I — gsino 
J log-—— = are tg —— arc tg - : 

7 0 COS W 0 cos w 

Wir erhalten daher 

+¢ ¢— 14] 
Spare are 4B, + Bs)| = —2J 7— a—2Rhyatd 1l+¢ 

5 sin w COS w 

ras 2o(I a) 1 + 20? cos 2 a tp! 12 cos2w +o 

zo8 sin w 20 cos w 
+ are tg o + are tg Geom 

also fiir die Stromfunktion den voce 

sin w cosw 
A = Le ‘ ert 

(5) | EEN Eg o) T+ 2g2cos2u +t | 1—2¢8 cos2 TERE 

| Uy 7 20 sin t 20 cosw 8s a : 12) eee i Ce Cg oy aD 

Im Kielwasser haben wir dagegen die kombinierte Stromfunktion 

Pee ete he 

zu verwenden. Um an der Stromfunktion zu priifen, ob die Randbedin- 

gungen erfillt sind, bedenken wir, daB am Vorderrand g:1—72=—2. 

Miiller, Theorie der ziihen Fliissigkeiten. 19a 
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7 : 1 : Re 
w=——, also sinw=— cos w=—- zu setzen 1st. Dann wird der Rand- 

forderung entsprechend 
oa Vibe 

also 
2 AS Auf der Riickseite dagegen ist @ =, 

0°) Re ih 

‘PT = Uy — Uo) Ca Tet 1 Uoaare ie 

Weil aber am Rand + mit o identisch wird, so haben - 

Pr+ Pe= oy. 

Die Geschwindigkeit v, beiderseits der Platte stimmt also unserer Vor- 

aussetzung gemiB mit der Translationsgeschwindigkeit wo therein. 

Cae 
pe a8 WHE 

Abb. 98. Das Oseensche Ree in i" Umgebung einer ebenen Platte 

(« =<). 

Was zunichst den Verlauf der Funktion ¥/, angeht, der in der an- 
geftihrten Arbeit des Verfassers dargestellt ist, so weicht er, wenn man 
von der unmittelbaren Umgebung der Kielwassergrenze absieht, wenig 
von einer geraden Linie ab. Die mittlere Neigung dieser Geraden oder 
die mittlere Geschwindigkeit des Kielwasserstromes ergibt sich unmittel- 
bar aus dem Ausdruck fiir die Ergiebigkeit Q= zu) a der Gesamtquelle zu 

7E 
(vk)m == Uo = D) 0 



od 
§ 78. Berechnung der Stromfunktion fiir den Fall « = 7/2. 291 

Zur Konstruktion des primiren Potentialfeldes (Abb. 98) ist zu- 
nachst der in (5) gegebene Wert der Stromfunktion YW, fiir verschiedene 
Radienverhiltnisse in Abhangigkeit von @ bzw. fiir verschiedene 
in Abhangigkeit von 9 berechnet worden. Die entsprechenden doppelten 

a 

; we y : a als Funktion von a umgezeichneten Y¥/-Kurvenscharen liefern dann 

in den Schnittpunkten mit &aquidistanten Parallelen zur Abszissen- 
achse mehrere auf einer Stromlinie gelegene Punkte des Stromfeldes > 

deren dipolare Koordinaten unmittelbar abgelesen werden konnen. 

Abb. 99. Oseensche Absolutstro6mung um eine senkrecht zu ihrer Ebene gleich- 

férmig bewegte Platte (u— 0). 

In Verbindung mit dem ¥/,-Diagramm entsteht auf diese Weise das in 

der Abb. 99 dargestellte absolute Stromfeld. Wahrend im Falle a>5 

die Stromlinien oberhalb der Platte (d.h. auf der Seite der vorstehenden 

Kante) einen zirkulatorischen Charakter haben, ist im symmetrischen 

Falle die Gesamtzirkulation verschwunden; das Stromliniensystem zeigt 

im wesentlichen nur einen quellartig von der Platte ausstrahlenden Ver- 

lauf. Wéhrend ferner der Kielwasserstrom zum Teil die Platte trifft, 

geht der andere Teil, nachdem jede Stromlinie einen dem Wirbelsprung 

entsprechenden Knick gemacht hat, in den Potentialstrom wher. Wenn 

man die Absolutstrémung mit der Parallelstrémung v,——wo tiberlagert, 

Gh 
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Abb. 100. Absolutstr6mung um eine Platte mit «= 90°. (Nach Ahlborn.) 

so erhalt man die von der bewegten Platte aus gesehene Relativstrémung. 

die in der genannten Arbeit des Verfassers dargestellt ist. Da der 
: re . : - . . o, 4 . : 

reine Kielwasserstrom die mittlere Geschwindigkeit | wo besitzt, so wird 

die Relativgeschwindigkeit im Wirbelraum in groBbem Abstand von der 

Platte = 
Vr = wo 5 — i 

wahrend in unmittelbarer Nahe der Platte Ruhe herrscht. 

§ 79. Gripe und Lage der Druckkraft. 

Um die beiden Komponenten der resultierenden Druckkraft, d.h. 

Widerstand und Auftrieb zu bestimmen, fiihren wir in den allgemeinen 

Ausdriicken (2) und (3) des § 73 die Werte fiir die Geschwindigkeits- 

komponenten ein und erhalten dann z. B. fiir den Widerstand 

1 anne 
Dae Ss ef dy 

Ch 
+a (64 a 1 

1 a l/a—7\z « aoe ct ct 
= — 4 uj, sinc | | ) cos? y sin, cos eo Lae < Dae oscse Ses 

= a 

ae ; 
OY fhe ee gy ey 

sin? dyn. 
Hise P| / 
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Die vorkommenden Integrale lassen sich mit Hilfe der Substitution 

Ro ee ea 4at 
rae (Bats CN es Tit dt 

und der allgemeinen Formel 

[ PHidr Ba 
(1 OY <9. Se 
Ce Rill I ead 

in einfacher Weise auswerten. Der Auftrieb besteht nach § 73, (3a) aus 

drei Teilen, deren erster mit dem bekannten Ausdruck von Kutta- 

Joukowsky identisch und deren zweiter der Quellstarke proportional 

ist, wahrend der dritte sich genau so behandeln laBt wie der Widerstand. 

Mit Benutzung von 

. : 1 ‘ 
I = 22a sine (> —“); [xdy =Q=4xaw 

Ch 

(a4 eaetegs é 

— cosa + sin’ 
1 2 

erhalt man dann nach einfacher Rechnung die Kraftkomponenten 

1 
Px = aay 08s [7 — (a — 2a) 288 4 

(1) ‘ 1 t COS @ 

cos 2a 
| Py = > eau; E ctga — (7 — 2a) ne 

mit den Beiwerten 

1 : cos 2 «| 

Soe E ae) cos a ? 

1 cos 2 
(1a) Ca => cE ctga — (w — 2a) 4 

(opie 1 | 
=p, = D laws — Ni 2ajetg 2a ; 

Die Formeln zeigen zunichst, daB die resultierende Druckkraft auf 

(Codex 

Cy) a 
9 a 

der Platte senkrecht steht. Wahrend nun das Verhaltnis des 

Beiwertes fiir a zum Beiwert C,=Cy fitit —= 3 mit den Kiffelschen Mef- 

resultaten gut iibereinstimmt, fallen die Absolutwerte bedeutend zu groB 

aus. So ergibt sich z. B. fiir a= - der Beiwert ¢,,= 2,57, wahrend der 

wirkliche, aus den Versuchen durch Extrapolation fiir die unendliche lange 

Platte ermittelte Wert etwa zwischen 1,8 und 2,0 liegt. Eine weitere 

Unstimmigkeit ist dadurch gegeben, da der Auftrieb fiir a=0 nicht 

verschwindet, sondern einen endlichen Wert (c,—=1) annimmt. Nun ist 

aber die Druckkraft im Kielwasser noch unbestimmt, da es zunachst 

Miiller, Theorie der zihen Fliissigkeiten. 19b 
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nicht ausgemacht ist, daB die Bernoullische Energiekonstante hier den- 

selben Wert besitzt wie im Potentialgebiet. Wir kénnen daher langs der 

Riickseite der Platte einen konstanten Druck p, hinzufiigen. Das wiirde 

bedeuten, daB Widerstand und Auftrieb um die Werte p,:*2asina 

und p,-2acosa, also die entsprechenden Beiwerte um c, sina und 

¢, cosa, verkleinert werden. Wenn aber der Auftrieb fiir a=0 den Wert 

Null ergeben soll, so hat man 

cos 2a 
—C,cosa=Q. 9 | ctga — (a — 2a) aoe 

Da der Klammerausdruck den Wert 2 hat, wird, so ergibt sich 

CL 

ote Q 
-04 -06 10 08 06 04 02 OV az 

Abb. 101. Vergleich des theoretischen Druckverlaufs auf der Vorderseite einer Platte 

mit der Eiffelschen Messung. 

Man hat also gerade den Staudruck auf der Riickseite hinzuzufiigen, 

um plausible Grenzwerte zu erhalten. Dann erhilt man aber fiir a= - 
“ 

den Widerstandsbeiwert 

1 x 

— (w+ 2)—1 = = 1,57, 
“ -_ 

der jedenfalls mit den Eiffelschen Resultaten gut zusammenstimmt. 
Die fiir einen beliebigen Anstellwinkel korrigierten Beiwerte lauten dann 

1 cos 2« , 
(Cw)korr Saya a (7 = 2 ct) — = % sinc 

2 COS & 

(2) = 1 Bs : ‘ cos 2a 
(Ca)corm = > |76 ctg a — (7 — 2c) —— — 2 cosa 

2 sin « 

1 70 
(Cp)korr = Oe ee 2 (76 — 2 a) ctg Date <= 2| 2 
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Wir haben zunachst (in der Abb. 101) die von Zeilon berechneten 

Druckwerte an der Vorderseite der Platte in Verbindung mit den Eiffel- 

schen Zahlen fiir mehrere Stellungen der Platte zusammengetragen, 

wobei die Abszissen die Verhiltnisse der Abstinde der Punkte vom 

Mittelpunkt zur halben Tiefe bedeuten. Man sieht, daB die theoretischen 

(voll ausgezogenen) Kurven im ganzen, von den Randern abgesehen, 

die Druckverteilung richtig wiedergeben. 

Tabelle fiir die charakteristischen Konstanten einer Platte. 

o 2 z | x | A | Cw | Ca | Cp | Cm i (Cp)ox (2) 21AUy| 2A Uy Q | | | 50 | 4 | x| 

Ou Os 2180" 11557 -1'0;6 | 
10 | 0,077 | 0,061 | 1,26 | 0,061 | 0,345 | 0,350 | 0,055 | 0,313} 0,92 | 0,75 | 0,332 
20 | 0,134 | 0,134 | 1,00 | 0,236/ 0,65 | 0,69 
30 | 0,165 | 0,211 |0,78 | 0,463| 0,80 | 0,925 | 0,101 | 0,217] 1,22 | 0,96 | 0,192 
40 | 0,178 | 0,287 | 0,62 |0,73 | 0,865/1,13 | 0,102|0,182| 1,28 | 1,04 | 0,166 
45 | 0,177 | 0,323 | 0,548/ 0,86 | 0,86 | 1,22 | 0,098 | 0,163| 1,33 | 1,07 | (0,156) 
50 | 0,168 | 0,360 | 0,466 | 0,93 0,83 | 1,30 | 0,093/ 0,144! 1,38 | 1,09 | 0,146 
60 | 0,144 | 0,416 | 0,346] 1,23 |0,71 | 1,42 |0,076|0,107| 1,46 | 1,14 | 0,120 
70 | 0,104 | 0,462 | 0,225] 1,42 | 0,516|1,51 | 0,054 |0,071| 1,52 | 1,17 | 0,082 
80 | 0,06 | 0,492 | 0,122) 1,54 |0,27 | 1,56 | 0,028 | 0,035! 1,55 | 1,19 | 0,04 
Cian kO 5G) Omni l sel) Ooo) Lor ale 0 0 | 1,56 | 1,20 |-0 

ee) 

Foppl (A-) 

_ S hittellh-h) 

\ 
\Eitrela-#) 
\ 
\ 

0 0s 10 15 2p 
ad Gy my 

Abb. 102. Polardiagramme fiir die auf eine ebene Platte wirkenden 

Fliissigkeitskrafte. 

Die fiir verschiedene Anstellwinkel berechneten Beiwerte sind in der 

Tabelle mit den Versuchswerten zusammengestellt. Ferner haben wir, 

der in Gottingen iiblichen Darstellungsart folgend, die sogenannte Polar- 
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kurve (c, als Ordinate in Abhangigkeit von ¢,, als Abszisse) der Theorie 

wie der Messung [nach Eiffel") und Féppl?)] gezeichnet. Die theore- 

tischen Zahlen stimmen im allgemeinen bei groBen Anstellwinkeln besser 

mit den experimentellen Werten tiberein, weil die Reibung hier weniger 

ins Gewicht fallt und weil die Stromung in diesen Fallen vor der 

Platte einen regularen Staupunkt besitzt, wahrend bei einem Winkel, 

der kleiner ist als der sogenannte kritische Winkel der Staupunkt ver- 

schwindet. Der kritische Zustand ist als ein labiler Zustand zu _be- 

zeichnen, bei dem insbesondere der Druck starken Schwankungen aus- 

gesetzt ist. Die Versuchswerte beziehen sich zunachst auf Platten mit 
2 

bestimmtem Seitenverhaltnis l= 

suchsdaten beigefiigt ist. Die auf das Seitenverhaltnis A=) beztig- 

lichen Werte sind aus den Eiffelschen Messungen gewonnen, wobei der 

(26 Plattenbreite), das den Ver- 

direkt festgestellte Widerstandswert fiir a= und die Verhaltniszahlen 

(Co) e 7 
G ar, zugrunde gelegt wurden. 

wo) 

Ks ist tibrigens nur natiirlich, daB die berechneten Kraftzahlen nach 

der ‘Korrektur kleiner ausfallen als die Versuchswerte, da das Strombild 

von vornherein als stationar angenommen wurde und da sich zeigen 

laBt, daB sich die Gesamtkraft aus zwei Bestandteilen zusammensetzt, 

der Resultierenden der Druckkrafte der mittleren stationaren (als er- 

starrt gedachten) Strémung und derjenigen Kraft, die als Aquivalent 

der instationaren Bewegung der Wirbelgebilde im Hauptstrom zu_be- 

trachten ist). 

2. Um die Lage der resultierenden Druckkraft zu ermitteln, haben wir 

zunachst das Moment in bezug auf den Mittelpunkt der Platte zu be- 

rechnen. Wenn wir die veranderlichen Bestandteile der Drucke ein- 

fiihren, erhalten wir 

Mo =| pydy = — 5 | [lwo —vs)* + 3] dy + Qui | x nay. 

) Vel. G. Eiffel, Der Luftwiderstand und der Flug, deutsch von F. Huth, 
Berlin 1912; ferner L. Jacob, La Résistance de V’air et VExpérience, I. Teil, Paris 
TOD Seno Gute 

*) O. Féppl, Windkriifte an ebenen und gewélbten Platten, Jahrbuch der 
Motorluftschiff-Studiengesellschaft, Bd. 4, 1910—11, S. 51— 119; vgl. auch Z. F. M. 
LOLO Me siite 

*) Vgl. Wilh. Miller, Mathem. Strémungslehre, Berlin 1928, 8.53, sowie 
den Bericht des Verfassers in den Verhandl. des III. Intern. Kongresses f. techn. 
Mechanik, Stockholm 1930, Bd. I, S. 205¢. 
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Mit Benutzung der Werte (4c) und (4d) des § 77 ergibt sich dann der 
Ausdruck 

1 ines , a 1 @ ce 

2 3 a—n\xn 2 a—n\x —7\x Mo => 0%, | sin @- (=) = cos (2 Z\ Seeine |e le 
; a+y 2 \a+r 2 \at+y 

—=i Oy 

fe e4 al 

a (a—7\9on . & (a—n\on 2 
+ 2cos-~ ( : ene | AA 2 \a+n + 2sin-, ae ndy. 

Die vorkommenden Integrale lassen sich wieder mit Hilfe der Sub- 
: ° UB ire=f) : 

stitution Bere =t? und der allgemeinen Formel 

+ a (ee) 

“(a —n\e ees 1-7? 27 fp? 
| dn =4a?| 2h+1— == he = = a, 

} bol sleet ; (1 + 47)8 sin 370 
=O 0 

behandeln. Man sieht dann, da sich die letzten vier Integrale heraus- 

heben und fiir das Moment der einfache Wert iibrigbleibt 

1 mu — 2«)' (3) Mo => eura? 3" tga 
“ 

Definieren wir den Beiwert c 
‘WU 

wie in der Tragfliigeltheorie durch 

den Ansatz 

so finden wir 

(3 a) Cig ae 

Wenn wir ferner das Moment der Kraft auf die Vorderkante der 

Platte beziehen, erhalten wir fiir den entsprechenden Beiwert 

P.a—M, 1 
(4) Cm, = putoak Eas Cp — Cm, - 

Der Verlauf des Momentes My bzw. des Wertes c,,, fiir veranderlichen 

Anstellwinkel ist der Tabelle 8. 295 zu entnehmen. Das Moment ver- 

schwindet fiir die beiden Grenzen a=0 und a5 und erreicht ein 

Maximum fiir einen Winkel, der der Gleichung 7—2a=2sin2a gentgt 

und der etwa dem kritischen Anstellwinkel der quadratischen Platte ent- 

spricht, bei dem der Ablésungsvorgang der Str6mung seinen Charakter 

andert. Wir haben ferner, wie es bei den Géttinger Profilmessungen 

iiblich ist, in der Abb. 102 die auf den Vorderkantenpunkt beziigliche 

Momentenpolare, d.h. ¢, in Abhingigkeit von c,,, dargestellt. In Uber- 

einstimmung mit den Tragfliigelversuchen ist der Polarenverlauf fur 

kleine Anstellwinkel bis etwa a=15° nahezu geradlinig und zwar etwas 

weniger steil ansteigend als die entsprechende Tragflichenpolare, die 

F 2 + : 
etwa die Neigung =| besitzt. 

my 
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Fiir die Lage des Druckpunktes erhalten wir schlieBlich den Ausdruck 

No M, (7 —2a)?- tga 

iS) ied heen oe ee ee, 
2 |. — 2 (a — 2a) ctg 2a —2 

sin « 

Die entsprechenden Werte dieses Verhaltnisses sind fiir verschie- 

dene Winkel berechnet und mit den Eiffelschen Resultaten zusammen- 

gestellt (Abb. 103). Wie namentlich die Kurvendarstellung erkennen 

laBt, stehen die theoretischen Werte in gutem Einklang mit der Messung, 

vor allem im Gebiet der gréBeren Anstellwinkel. Fiir Winkel kleiner 

als etwa 15° fallt die Abweichung gegeniiber den Versuchen (aus 

ubrigens leicht erklarlichen 

Griinden) ziemlich erheblich 

T ] aus; wahrend namlich die 

Versuchskurve ftir abneh- 

Ys = aaa l =I 

Q3 | * 
———|lersuch mende Winkel von 15° an 
—— \/heorre ; ; ; ; J 

G2 if tl ziemlich steil ansteigt, naihern 

Fy sich die theoretischen Werte 
; , : 1 

von ~° dem Grenzwert —, der 
ect ee all a 3 

ay @ ©. of i on (2 CP iy : nes 
Lage des Druckpunktes tur eine ebene Platte weit unter dem wirklichen 

Abb. 103. Grenzwert bleibt. 

§ 80. Allgemeine Siitze tiber Kielwasserstréme vom 
Oseenschen Typus. 

Wenn man sich voriibergehend von der Bedingung des Haftens der 

Flissigkeit auf der Riickseite des Kérpers frei macht, so lassen sich die 

Oseen-Zeilonschen Stromfelder als Spezialfalle von unstetigen Stré- 

mungen auffassen, die wesentlich durch die Wirbelverteilung innerhalb 

des wie bei Oseen begrenzten Kielwassergebietes bestimmt sind. Man 

geht dabei am besten von einem Satze aus, der bisher nur in der elek- 

trischen Stro6mungslehre angewendet worden ist, der aber gerade im Hin- 

blick auf das Oseensche Ergebnis eine besondere Bedeutung fiir die 

Hydrodynamik gewinnen kann!). 

Denkt man sich von den Endpunkten A, und 4, der lotrecht zur Be- 

wegungsrichtung gestellten Plattenspur (Abb. 91) zwei geradlinige, unend- 
lich lange und der Hauptachse parallele Wirbelschichten von entgegen- 

1) Vgl. F. Lindner, Der Formwiderstand einer Platte, Verhandlungen des 
3. Intern. Kongresses fiir techn. Mechanik, Stockholm 1930, I. T. S. 198: Wilh. 
Miller, Zur Konstruktion von idealen Kielwasserstromungen, Ebenda, S. 205; 
sowie die oben zitierten Arbeiten des Verfassers. 
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gesetztem Drehsinn und der Belegungsdichte yo und —Yo ausgehen, so 
ergibt sich, da®f das von ihnen erzeugte Stromfeld auBerhalb des Kiel- 
wasserstreifens (d. h. in J) identisch ist mit dem Feld, das von der gleich- 
mafig mit Quellen belegten Strecke 4,4, erzeugt wird, wenn die Wirbel- 
dichte y» gleich der Quelldichte q ist, wihrend sich das Feld im Innern J 
des Streifens als eine Uberlagerung der Quellstrémung mit einem auf die 
Platte gerichteten homogenen Parallelstrom von der Geschwindigkeit y, 
darstellt. Der Beweis dieses Satzes ergibt sich unmittelbar daraus, dab 

die Doppelquellbelegung einer Flache ersetzbar ist durch einen Wirbel- 

ring langs der Berandung, dessen Zirkulation mit dem Moment der 

Belegung tbereinstimmt. Denkt man sich namlich den Kielwasser- 

zylinder durch eine unendliche kontinuierliche Folge von solchen doppelt- 

belegten Flachen (von der Dicke dz) aufgeteilt, so heben sich alle 

Zwischenbelegungen auf, und es bleibt nur die einfache Quellbelegung 

der Endflache tibrig, wahrend die entsprechenden Wirbelringe sich zu 

einer zylindrischen Wirbelschicht zusammensetzen, die im ebenen Fall 

im Unendlichen geschlossen ist. 

Dasselbe ergibt sich durch formale Ausrechnung des Potentials fiir 

die Quell- und Wirbelstrémung. Man erhalt z. B. im ebenen Fall ftir das 

Gebiet I 
+a 

(1) O+ipal [Ig —in)dn = 27 2 Ig ee a lets? + a’), 
21. Za z2+t1a 27 

ar ; 
ep 

(2) Vi= ve ONAN a ge G 

Im Gebiet II ist zum Potential noch die lineare Funktion yoz, zur 

Geschwindigkeit die Konstante yo hinzuzufiigen. 

Dieser Grundsatz laBt sich nun ohne Schwierigkeit auf den Fall aus- 

dehnen, dai das Kielwassergebiet nicht nur an der Grenze, sondern tiber 

seine ganze Breite von Wirbelstreifen erfiillt ist, so wie etwa im Oseen- 

schen Fall. Dabei ist zu beachten, da es nicht geniigt, die inneren 

Wirbel allein zu beriicksichtigen, deren Starke der Ableitung der Kiel- 

wasserfunktion 7(y) nach y proportional ist, sondern daB erst die als 

wirbelnd zu denkende Endschicht den Geschwindigkeitssprung an der 

Kielwassergrenze zu erzeugen vermag. Wenn die Elementarzirkulation 

dieser Endschicht yy)=y(a) und die Zirkulation eines inneren Wirbel- 

streifens gleich w(74)d7 gesetzt wird, so haben wir fiir die komplexe Feld- 

geschwindigkeit im Gebiet I nach (2) den Ausdruck 

Be ge : : 

V= el w(n) log uae thee 52 lg 

0 

2—t4 

z+ia 
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Setzt man w(7)dy=—dz, so erhalt man durch partielle Integration 

AC yp dec ead poms pate a (( 
aa Dre Sz+ia Wn rlogs5 5. al ae on 

Nun ist, da x als gerade Funktion von 7 vorausgesetzt wird, 

a a 0 +a 

d ay pees a {zien 
ee z—in| 2a) z2—-%r 

0) 0 =o —a 

Wir erhalten also fiir die komplexe Geschwindigkeit 

—- a F 

of ee 1 ‘Z(n) dy, 

Y =, z2—%n 7 
—a 

Aus der Form dieses Ausdruckes schlieBt man ohne weiteres, daB die 

dem Wirbelsystem im erw&hnten Sinne aquivalente Quell- 

belegung unmittelbar durch die Kielwasserfunktion y(7) dar- 

gestellt ist. 

Man sieht nun weiter, daB die durch die ermittelte Verteilung erzeugte 

Strémung die Randbedingungen fiir die mit konstanter Geschwindigkeit 

bewegte Platte nicht erfiillt, da mit der Quellverteilung auch die Ver- 

teilung axialer Geschwindigkeiten am Rand ungleichmaBig ausfallt. 

Damit die Randgeschwindigkeit », wieder gleichmaBig wird, also die 

Randbedingungen erfiillt werden, ist noch eine Wirbelbelegung der Platte 

erforderlich, die fiir zwei symmetrische Punkte y= + 7) entgegengesetzt 

gleich ist und in der Mitte der Platte verschwindet. Wie die Quell- 

belegung durch die Geschwindigkeit v,,, so ist auch die Wirbelbelegung 

durch den Verlauf der anderen Komponente v,, der Gleitgeschwindigkeit 

der Quellstr6mung lings des Plattenrandes, festgelegt. Setzen wir diese 

Komponente v,= 3% (y) und machen die Dichte der Wirbelbelegung 

gleich der ,,Gleitfunktion** 7% (y), so hat die von der Belegung herriihrende 

tangentiale Geschwindigkeit langs des Randes die Werte + 4%(y), und 

man sieht dann sofort ein, daB bei geeignet gewaihltem Drehsinn die 

von der Quelle erzeugte Gleitgeschwindigkeit auf der Riickseite auf- 

gehoben werden kann. Wenn nun im besonderen der variable Teil der 

anderen Randkomponente (vz) der Geschwindigkeit wieder mit dem 

negativen Wert der Kielwasserfunktion tibereinstimmt, die Funktionen 

und % also in gewissem Sinne reziprok zueinander sich verhalten, so 
ergibt sich in der Tat, dai bei der Zusammensetzung beider Felder die 
der Translation entsprechende Randbedingung erfiillt werden kann. 

Wenn ferner die ebene Plattenspur einen Winkel a mit der Bewegungs- 
richtung bildet, und das Kielwasser ebenso begrenzt ist wie im symmetri- 
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schen Fall, so ergibt sich durch eine einfache Erweiterung der obigen 
Betrachtung, da die Wirbelschleppe im Gebiet I fiquivalent ist einer 
Quell- und Wirbelverteilung lings der Plattenspur, deren Dichtefunk- 
tionen q und y durch Multiplikation von y(y) mit sina und cosa er- 
halten werden, also 

q=xzy)sine, y= zy) cosa. 
Bei einer besonderen Beschaffenheit der Kielwasserfunktion lassen 

sich dann die Oseenschen Randbedingungen dadurch erfiillen, dai man 

eine weitere Wirbelbelegung der Platte hinzufiigt, die unmittelbar durch 

die Gleitfunktion %(y) bestimmt wird. 

§ 81. Anwendung auf die Oseenstrémung um die 

ebene Platte. 

1. Um die vorgetragenen einfachen Grundsitze auf die Oseenstrémung 

um die ebene Platte anzuwenden, setzen wir zunachst a—- dann ist m - 

> > 

die gesamte Starke der Quellbelegung sofort aus der Entwicklung des 

Geschwindigkeitsausdruckes zu entnehmen; man erhalt 

Q= 70a. 

Aus der Bedeutung der Kielwasserfunktion 

eave agae ment lem ss ? 

die zugleich die Quellverteilung langs der Platte bestimmt, ergibt sich 

ferner die einfache Integralbeziehung 

+a 

| xy)dy = 1AU=—Q. 

—a 

Die andere charakteristische Funktion, die Gleitfunktion, erhalten 

wir, wenn wir in dem Geschwindigkeitsausdruck fiir einen Punkt des 

anderen Plattenrandes 
ei) Cat =. 

z+ia aty 
els 

setzen und den imaginaren Bestandteil bestimmen. Es ergibt sich dann 

= 

aty\' faty ' 
a-y st ie 

der sich bei Wahl der positiven Wurzelwerte von 7 (y) nur durch das 

Vorzeichen des zweiten Gliedes unterscheidet. Er ist, wie zu erwarten, 

der Ausdruck 

ie Wo 
eS y2 

“ 
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eine ungerade Funktion von y, die in der Mitte y=0 verschwindet und 

an den Grenzen (y=-+ a) positiv und negativ unendlich wird. 

Die gesamte Potentialstr6mung kann dann, wie sich zeigen laBt, als 

erzeugt gedacht werden durch die Quellbelegung und die Wirbelbelegung 

langs der Platte, oder die gesamte komplexe Geschwindigkeit kann in 

der Form dargestellt werden 

VV Ve ae 
= 

In bezug auf den direkten Nachweis der Identitat dieses Ausdruckes 

mit dem friiher gegebenen moge auf die angefiihrte Arbeit des Verfassers 

verwiesen werden. 

Fiir das Potential hat man die entsprechende Form 

+ a 

W=5~ | (xl) —éz() lgle — in) dy. 
a 

2. Im Falle der schief bewegten Platte hat das Winkelargument der 
Awe Z-aeie 
Grobe - 

ztaeie 

hier fiir die komplexe Geschwindigkeit einen Ausdruck von der Form 

V=wu +e **- x(n) 

oder als tangentiale Geschwindigkeit 

auf der Vorderseite den Wert —a; wir erhalten daher 

Vt = Uo COSH + 7(1). 

Den variablen Teil der Gleit geschwindigkeit 

a 1 c 

7) G—n\2e 2. « a—7\2n ce 
XA) =u = sin = ) 
au ° iG + 7 . 2 at+n ee Dee 

y ie : ¥ : : Arai melee 
wo == — gesetzt ist, k6énnen wir wieder als ,,Gleitfunktion® benutzen. 

Die gesamte, im Potentialgebiet mit dem Wirbelsystem des Kielwassers 

aquivalente Belegung der Platte setzt sich dann aus drei Teilen zu- 

sammen. Aus der Kielwasserfunktion x, die sich von y nur durch das 

Vorzeichen des zweiten Gliedes unterscheidet, bilden wir die Ausdriicke 

sin @ x(n), cos @ x(n), 

die unmittelbar die Belegungsdichten fiir die Quellbelegung und die 
erste Wirbelbelegung darstellen. Zur Erfiillung der Randbedingungen ist 
dann noch eine zweite Wirbelbelegung der Platte von der Dichte x (7) 
hinzuzufiigen. Die gesamte Geschwindigkeit erhalt daher die Form 

+a 

V = Vat Vat Vow gen | Meat soe led Sexes fi 
2 z— neia ? i 
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und es laft sich wieder auf dem Wege der direkten Auswertung des 
Integrals zeigen, dafi der daraus gewonnene Ausdruck mit dem frither 
gegebenen tibereinstimmt. 

§ 82. Die Zeilonsche Erweiterung des Oseenschen Ansatzes. 

1. Als Resultat des Oseenschen Grenziiberganges ergibt sich, daB die 

Linien konstanter Wirbelintensitat mit den sogenannten Fiihrungs- 

linien, d.h. den Parallelen zur Haupt- oder Translationsrichtung, 

zusammenfallen. Die von Zeilon1!) unternommene Verallgemeinerung 

verfolgt nun zunachst den Gedanken, statt der Fithrungsstro6mung w 

eine allgemeine, nicht parallele Strémung vo zu verwenden, die wieder 

als Potentialstromung vorausgesetzt wird und im Unendlichen in die 

Parallelstr6mung uo tibergeht. Zerlegt man im zweidimensionalen Fall 

die Relativstr6mung v’ in die bekannte Strémung vo, die auch als ,,ein- 

gepragte Primarstrémung* bezeichnet wird, und in die Stérungsbewegung 

pv, so hat man zu setzen 

vD’= Do +D, 

und die Differentialgleichung erhalt die Form 
fe 

(1) v : +740’ + (vo +d) xrotv=0. 

Wenn wir neben den linearen nur die ,,halbquadratischen® Glieder 

Do <rotv beibehalten, so kommt 

(1 a) Sle +yd140'+ do X rotv=0. 

Die entsprechende Wirbelgleichung lautet 

(2) (vo + v)-F w—vdIw=0 

bzw. 

(2a) Do -Lw—viIw=0. 

Beim Grenziibergang zu verschwindender Reibung ergibt sich 

(v0 +v)-/w=0 

bzw. 

(3) Do: Lw=0. 

Wenn also die asymptotische Lésung des linearisierten 

Gleichungssystems ein Wirbelgebiet enthalt, so fallen die 

Linien konstanter Rotorintensitat mit Stromlinien der ein- 

geprigten Primarstrémung zusammen. Man kann daher die 

1) N. Zeilon, Verhandlungen des II. Intern. Kongresses fur Techn. Mechanik, 

Ziirich 1927; C. W. Oseen, Hydrodynamik, Anhang (zwei Vortrage v. N. Zeilon), 

8. 321—327. 
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Wirbelstirke auch als Funktion der Stromfunktion y dieser Strémung 

ausdriicken, also 

(3a) w = f(y) 

setzen. Die Bestimmung der Wirbelverteilung kann man auf den fritheren 

Oseenschen Fall dadurch zuriickfiihren, daB man yp als Imaginarteil 

einer komplexen Funktion 
p+iw 

betrachtet und die Gleichungen auf die krummlinigen Koordinaten 

und y transformiert. Die Wirbelgleichung lautet ausfiihrlich, wenn 0o,, 

Vo, die Komponenten von vo heiben 
, rare 

(2a) tones + von 55 =yAw. 

Nun hat man 

Ow Og Ow Og 

Ven Gy Oa? Uy By Oy 

Ow Ow Ow Ow Ow dw 
Ae on ONG — Bu Voy; dy rar : Voy + Ai Vox 

Ow Ow : Hy Olah 

Ferner ergibt sich durch nochmalige Differentiation und Benutzung 

der beiden Gleichungen, 

/E a OVon OVo, oY 

Do og Vox — Dal VO" ain ye OUY ai Voz =U, 

OVoy OVox Oy Ov 
rot Dp = 2w = _ tae ee i, S as 

- Oo” 2 Og oi Ow °¥ Fy vor =O 

die Beziehung 

O2w O21 

Die Gleichung (2a) geht daher tiber in 
3 

(4) bee YA gy \w = 0. 

Wie man sieht, hat die Gleichung dieselbe Gestalt wie die Gleichung 
fiir w im Oseenschen Fall (§ 72) und stimmt bis auf die Koordinaten 

Shi gee Ma fe Wet NG P wu 1 ; y, y volistiindig damit iiberein, wenn man 2k— = durch — ersetzt. Wir ; 5; 
kénnen daher auch ohne weiteres die oben gegebene Lésung auf den vor- 
liegenden Fall tibertragen, desgleichen den gesamten Grenztibergang zu 
verschwindender Reibung. Als Elementarlésung von (4) kénnen wir 
wieder ansetzen 

i 
py (lito) 

(5) i cen Kol), 
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wo t= V(~—0)?-+ (y—wo)? und Ky die Hankelsche Funktion nullter 
Ordnung bedeutet. Wenn qo, yo einen Punkt der Randkurve bezeichnet, 
so laBt sich mit Hinftthrung einer Belegungsfunktion / (qo, yo) die Gesamt- 
lésung fiir w durch das Randintegral darstellen 

(Pp = Po) 

(5a) w=[fgowre 2 : Ko(y,,}ds0. 
Cc 

Fir »—>0 findet man dann, daB w iiberall gegen Null konvergiert 

auBer auf den durch 

Y=Wo, P—por<O 
definierten, vom Rand bis ins Unendliche gehenden Stromlinienab- 

schnitten, wo w von Null verschiedene endliche Werte annimmt. Damit 

wird die Randkurve in zwei Bereiche geteilt, die ,,hydrodynamische 

Vorder-“* bzw. ,,Riickseite, und gleichzeitig die Form und Ausdehnung 

der der Riickseite angeschlossenen Wirbelschleppe festgelegt, die die 

Gesamtheit aller Punkte der Flissigkeit umfaBt, fiir welche p< qo ist. 

Das neue potentialtheoretische Problem ist dann dahin zu charakteri- 

sieren, gemaB der Gleichung 

Ow 

Og 
eine Wirbelbelegung auf den Stromlinien (y <q) der Primarstrémung, 

ORG). 

also w und die St6rung v so zu bestimmen, daB auf der Vorderseite 

(vox + Vx) cos (nx) + (voy + Vy) cos(ny) = 0, 

auf der Riickseite 

De +v=0 
und im Unendlichen 

p=0 
wird. 

Die weitere allgemeine Behandlung des Problems, die Gebrauch macht 

entweder von der Methode des Poissonschen Integrals oder der Integral- 

gleichungen, soll hier nicht gegeben werden. Hinige Einzelheiten findet 

man in dem von Zeilon verfaBten Anhang zu der Oseenschen Hydro- 

dynamik. Zeilon hat auch im besonderen den Fall des im gleichmaSigen 

Strom rotierenden Zylinders durchgefiihrt. Als natiirlichen Ansatz fir 

die eingepragte Primarstrémung benutzt er die komplexe Stromfunktion 

: 4D 

die sich in die Teilfunktionen 

i i 

Miiller, Theorie der zihen Flissigkeiten. 90 
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zerlegt. Das Wirbelgebiet ist dann durch die Gesamtheit der Strom- 

linien y gebildet, die der Ungleichung 
r 

27 Uy 
G 

r cost — a cos oo < (+ — Jo) 

: ee. eae 
entsprechen, wenn a den Radius des Kreises und #) das Winkelargument 

eines Kreispunktes bedeuten. 
: 6 sme Je 

Wir haben in Abb. 104 das Wirbelgebiet fiir die drei Falle Ted = 

= 2;3;3, 6 wiedergegeben, das gegeniiber dem Oseenschen Fall mit einer 

le! 
eels a 

Abb. 104, Grenze des Wirbelgebietes hinter einem Rotor bei verschiedenen 

Drehgeschwindigkeiten (nach Zeilon). 

der Stromrichtung parallelen Kielwasserbegrenzung um so starker defor- 

miert und verdreht erscheint, je gréBer die Rotationsgeschwindigkeit 
“ : : : - Le 

ausfallt. Dabei ergibt sich, daB fiir -> a die untere Grenze des Kiel- 
bo 

wassers von einer singularen, den Verzweigungspunkt der Primir- 

stromung (x«=0, y=— oe enthaltenden Stromlinie gebildet wird. 
‘ a) 

Mit wachsender Zirkulation J” verengt sich das Wirbelgebiet nach 
hinten immer mehr, bis schlieBlich das Gebiet in der den Doppelpunkt 
enthaltenden Schleife den Kreiszylinder beriihrt, also die beiden Ab- 
losungsstellen mit dem Punkt #0, y=a zusammenfallen. Setzen wir r 
See A, so ist die Gleichung der unteren Grenzlinie 

f 0 

ytA—iAlg—=0. 
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Mit y=r—=a erhilt man also fiir 2 die Gleichung 

A+G 1 A 

oder : ee 

A 1t5 
=e *, 

Das gibt fiir 2 im Falle der zusammenfallenden Ablisungspunkte 
etwa den Wert 3,6a. Wie die bekannten photographischen Wiedergaben 
der Stromung in der Umgebung eines Rotors zeigen, stimmt das Ergebnis 

der Theorie jedenfalls qualitativ mit der Wirklichkeit tiberein. 

§ 83. Druckverhiiltnisse im Kielwasser. Einfitihrung von 
Gleitintervallen. 

Wie wir bereits oben bemerkt haben, ergibt die asymptotische Theorie 

von Oseen einen gegentiber der Beobachtung zu groBen Widerstands- 

beiwert und einen beim Durchgang durch die Kielwassergrenze unstetigen 

Druckverlauf. Da aber die Gréfe des Druckes im Kielwassergebiet nicht 

eindeutig bestimmt ist, so wiirde es zunachst naheliegen, jedenfalls bei 

endlichem Sprung eine additive Konstante so hinzuzufiigen, daB ein 

stetiger Ubergang des Druckes entsteht. Der damit gewonnene Wider- 

standswert kommt der Wirklichkeit wesentlich naiher. Wir wollen aber 

im AnschluB an Zeilon!) die Diskussion des Druckes noch etwas ge- 

nauer verfolgen. 

Wenn man fiir die Relativstrémung wieder den Ansatz macht 

p =D — Uo, 

so ergibt sich aus der Bewegungsgleichung fiir den Druck der Ausdruck 

(1) q =20 | [ojw'da —vj,w' dy, 

der bei der Oseenschen Vernachlissigung tibergeht in 

, fe, 0d 

(la) = 2ou0 | w dy; a= 0. 

Die Druckbestimmung wird fehlerhaft, wenn der von wo freie Bestand- 

teil des Integrals (1) bedeutende Werte annimmt. An der Oberflache des 

Korpers ist nun bei Oseen entweder w’=0 (vorn) oder v,=0 (hinten). 

Man sieht also, daB& der Fehler mit der nicht tiberall zulassigen Ver- 

nachlissigung des Produktes v, w’ zusammenhingt, dessen einer Faktor w’ 

an der Grenze des Wirbelgebietes sogar unendlich grof wird. Da aber v, 

1) N. Zeilon, Beitrage zur Theorie des asymptotischen Fliissigkeitswider- 

standes, Nova Acta Regiae Societatis Scient. Upsaliensis, Uppsala 1927, 8. 22f. 

20* 
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in diesem Gebiet verschwindet, so sind wir jedenfalls berechtigt, an der 

Annahme festzuhalten, daB die Wirbelkonvektion der x-Achse parallel 

erfolgt. Auch bei der von Zeilon herriihrenden Abanderung der Oseen- 

Stroémung bleibt die Gleichung —0 im wesentlichen erhalten. 

Diese Abanderung besteht nun darin, eine modifizierte Potentialstré- 

mung —w,(y) einzuftihren, die auBerhalb des Kielwassers mit —w,) iden- 

tisch wird und am Kielwasserrand stetig in —u> tibergeht. Dann haben 

wir mit den Oseenschen Vernachlassigungen beim Grenztibergang v>0 

Ow 

3 da (=20/ uly)w'dy, 5, = 0- 

Wahrend also das Oseensche Potentialproblem das gleiche bleibt, ist 

der Druck im Kielwasser von der Wahl der Primarstromung u,(y) ab- 

hangig. 

Um den vollstandigen Differentialgleichungen wenigstens in der Nahe 

des Koérpers méglichst gut gerecht zu werden, nimmt Zeilon einen Teil 

der rotorbehafteten geradlinigen Bewegung im Kielwasser zur Primir- 

strémung hinzu oder setzt wi(y) gleich der gesamten Relativbewegung w,, 

des Wirbelabflusses an der Korperriickseite. Die Gleichungen (2), die 

damit Giltigkeit behalten, ergeben dann wegen des Haftens der Relativ- 

stromung an der Riickseite 

OG. 
(2a) ag =0, Age q' = const. 

Die absolute GréBe des Kielwasserdruckes bleibt aber weiter noch 

unbestimmt. Um den eigentlichen Grund dieser Unbestimmtheit, die 

Unstetigkeit an der Grenze, wo woo, zu beseitigen, ersetzt nun Zeilon 

die Oseensche Strémung durch eine von ihr nur wenig abweichende 

Strémung, welche dadurch ausgezeichnet ist, da8 der Ubergang von der 

Gleitung auBerhalb zur Haftung innerhalb des Kielwassers in kleinen, 

den kritischen Punkten angeschlossenen, sogenannten Gleitintervallen 
stetig erfolgt, wobei die Kleinheit der Intervalle eine nur geringfiigige 
Abweichung der Wirbelkonvektion von der 2-Richtung gewibrleistet. 
Bestimmt man dabei den Druck aus der Gleichung (2) und laBt die 
Grobe der Gleitintervalle nachtraglich nach Null konvergieren, so kann 
man auch die noch unbestimmte Konstante bei der Druckbestimmung 

im Oseenschen Fall ermitteln. 

Setzt man also, um diesen Grenziibergang durchzufiihren, nach § 72 
fiir die Kielwasserstromung 

O® 
— urly) = v1 — Uo + vey) = ae + vx (y), 
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so wird an der Riickseite des Kérpers, etwa eines Kreiszylinders, 

ag ! 
a vr(y) cos t= 0. 

Da ferner 
= 0 VU; 

2w = — Ais 

so haben wir das kleine Gleitintervall 

(3) q =29/muly)w'y)dy =0/ udu = § [d(ui), 

da die Potentialkomponente sich nur wenig andert, also 

dv,c dv, +dvu,=—duy 

gesetzt werden darf. An der Grenze des Gleitintervalls ist aber u?=0; 

infolgedessen behalt der Druck bei stetigem Ubergang durch die Kiel- 

wassergrenze seinen durch die Potentialbewegung an der Stelle )=90° 

bestimmten Wert auf der Riickseite bei. Nun haben wir fiir )=90°, 

wenn der Druck in der ungestérten Strémung gleich Null gesetzt wird, 

fiir den Fall des Kreiszylinders 

also 

woraus sich der Kielwasserdruck ergibt 

eee 2 Pye 1 2 
P= 50, — Us) = — 29% - 

Wenn man den Widerstand berechnet, der dieser stetigen, in der 

Abb. 89 als Kurve I dargestellten Druckverteilung entspricht, so erhalt 

man nach Zeilon den Wert 

Cw = 0,523 5 

der etwa um 7% gréBer ausfillt als der oben angegebene korrigierte 

Zeilonsche Wert, der einem verinderlichen Kielwasserdruck entspricht. 

§ 84. Endliche Gleitintervalle fiir den Fall des Kreiszylinders. 

Zur weiteren Vervollstandigung des Ansatzes und zur Vermeidung 

der Unstetigkeit an der Grenze des Wirbelgebietes fiihrt Zeilon end- 

liche von 0=+ . bis #= +a(\a => 4 reichende Gleitintervalle ein, 

langs deren die Tangentialgeschwindigkeit am Zylinder stetig auf den 

Wert Null herabsinkt. Dabei sollen die Intervalle so klein angesetzt 

werden, da die geainderte Strémung nur wenig von der Oseenstrémung, 

also insbesondere die Wirbelkonvektion nur wenig von der negativen 
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v-Richtung abweicht. Wenn wir die Relativstrémungsgeschwindigkeit 

mit Strichen bezeichnen, so haben wir noch fiir die Oseenstrémung, d. h. 

ohne Vorhandensein von Gleitintervallen auf der Vorderseite des Zylinders, 

dh. fir — <b<4, 

( 1 Colas Rated eg J(G@) =p) = 5 — I= arctg| sae 

auf der Hinterseite, d. h. fiir ae ee Sie 

w=0. 

y ist dann der Winkel, den die Stromlinien mit der negativen x- 

Richtung bilden. » 

Fuhrt man nun das Gleitintervall ein, so sind die Randbedingungen 

in der Weise abzuandern, dafs in diesem Bereich y um eine zusiatzliche, 

noch naher zu bestimmende ,,Ablenkungsfunktion™ w,(#) erganzt, also y 

durch y+ yi und entsprechend die im komplexen Geschwindigkeits- 

ausdruck vorkommende Funktion G(z) durch G(z)+ G,(z) ersetzt wird. 

Man erkennt daher, daB die zusiitzliche Funktion G,(z) aus dem 

Poissonschen Integral als Funktion zu bestimmen ist, deren Imaginir- 

teil auf dem (Hinheits-) Kreis langs des Gleitintervalls die Werte (0) 

annimmt. Man erhalt daher nach § 74 
D 

382 a 

faye 1+—e-t* 
Chl )=5 | wi (9) : =O 9) 

cs ——— ete 

” a 

(1) va 
Go! 1 « Go! a i Wr (F') ctg > (9 — NdH, 

4 

wobei yi(0’) im Intervall a< 0’<2a—a verschwinden soll. 
Die neue komplexe Geschwindigkeit der absoluten Potentialstrémung 

wird daher 

(2) V=wl1—° 7 = i 

: ce 

Fir den Betrag der Relativgeschwindigkeit langs des Kreises hat man 
7 ¢ 

2 sin —— 
2 (2a) | 0 | = Voz? + of? = eG 9+ G9), 
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Zeilon macht nun fiir die Ablenkungsfunktion, die zunaichst will- 
kiirlich bleibt, den fiir die Ausfiihrung der Integration, zweckmabigen 
Ansatz 

(3) Wi (9) 

der den Randbedingungen geniigt; denn es ist 

cos # - sin? ( — ce) 

Cos? & > 

wi=0 fur J=—= und “7= (7, 

dw aL g dw « ae = fay = = und ot = OF ftir = a, 

Die Stromlinien des Potentialfeldes bilden daher auf der Kérperriick- 

seite mit der negativen x-Richtung den Winkel y,, der an der Grenze 

- des Gleitintervalls verschwindet, und gehen erst in gréBerem Abstand 

vom Zylinder in Parallele zur x-Achse tiber. Um die Randbedingungen 

im Kielwasser zu erfiillen, muB eine (rotorbehaftete) Kielwasserstré- 

mung v, parallel zur w-Achse hinzugefiigt werden. Da die resultierende 

Normalkomponente der Relativstromung verschwinden mu8, so hat man 

(v} rr = ve» cos. — (v)), =0. 

Nun ist 

(vp)z =|V' | cos(a# —F+ Yr) =|V'| cos(F — yn). 

Daher hat man 

© 
oe, == STS) 2 

cos 

und es ergibt sich als resultierende Geschwindigkeit in der #- und y- 

Richtung 
V'|cos(#?—w,) | 

" = | Wl | V'| cos(t — ' iW = bape (aioe 

(v;)r77= — |V"| cosy + Baa =|V'|tg dsiny1, 

» foes 
(oi = —|V")+ sin wr, 

ferner ene 
2 sin? w 

12 qyl2 oe ¢ aah Ete 
(vg?) zr + (Vy?) x7 a aate 

SchlieBlich gewinnt man fiir den Druck den Ausdruck 

ae, @ Whe sin? Wy 

(5) P~ 4 ~ 3 cos? # 

Im Gleitintervall andert sich der Druck nach der Formel (3) des § 83 um 

f= | (v;)rr dvb 

Wir geben die von Zeilon berechnete Tabelle der Geschwindigkeits- 

verteilung im Kielwasser fiir den besonderen Fall a=110°. Der Druck- 

verlauf, der teilweise durch mechanische Integration bestimmt ist, ist in 

der Abb. 89 als Kurve II dargestellt. 
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Tabelle fiir die Geschwindigkeiten im Gleitintervall (a = 110°) 

an der Riickseite eines Kreiszylinders. 

ee
 

ee eee 

9° Wy Te Wt MAA ar (Yx)r7 
Lil ae hs Tye = ae a ey ee ee 

90° 0 1,414 | 1,467 | 0,00 — 1,467 

94 2°36’ 1,824 | 1,362 | . 0,478 — 0,883 

98 2°58’ 1,283 1,278 08054 = 0472 

102 1°58" 1,247 1,217 1,022 — 0,195 

106 0°35’ | 1,225 1,199 | W157 >|" —0,042 
110 oP 1 1207 1,205 1,205 | 0,00 

Da in diesem Fall das Druckminimum stiirker geworden ist gegen- 

iiber dem Grenzfall a — +0, so ergibt sich ein Widerstandsbeiwert 

cw = 0,388, 

der kleiner ist als der oben angegebene und bereits dem nach dem Abfall 

erreichten Minimum des Widerstandes sehr nahe kommt. 

Eine weitere Annaherung an die wirkliche Druckverteilung, die einer 

fast vélligen Ubereinstimmung mit den in Géttingen und Berlin experi- 

mentell festgestellten 

Werten gleichkommt, 

hat Zeilon  erreicht 

~ durch Einftthrung 

eines nicht mehr in 

den  Fthrungslinien, 

sondern lings Hyper- 
Abb. 105. System der Wirbelbahnen hinter einem pacueah. 

Kreiszylinder bei Einfiihrung von Gleitintervallen 
(nach Zeilon). Kielwassers und eines 

belasten  stré6menden 

von 1O8—128 ° reichen- 

den Gleitintervalls (Abb. 105). In der Abb. 89 sind die entsprechenden 

theoretischen GréBen durch die Zahl III gekennzeichnet worden. 

Wie erfreulich diese Ehrenrettung der theoretischen Hydrodynamik 

auch ist, so hat man doch, auch von mathematischer Seite, gelegentlich 

darauf hingewiesen, daB die Zeilonschen Ansitze mit mancher Will- 

kiir behaftet sind und daB der Zusammenhang mit der asymptotischen 

Theorie Oseens, die doch den ersten Ausgangspunkt bildete, in ge- 

wissem Sinne aufgelést oder jedenfalls gestért erscheint (Noether). Von 

mechanischer Seite kénnte man ferner die kritische Anmerkung machen, 
daB die Verbesserung des Oseenschen Ergebnisses nicht auf eine 
empirische Festsetzung, eben der Ablésungsstelle als des Kielwasser- 
ursprunges, Riicksicht nimmt (Prandtl). Trotz dieser Mingel behalt 
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aber die Zeilonsche Theorie ihre groBe Berechtigung insofern, als sie 
den Einflu8 der Gleitintervalle oder der verhiltnismifig geringfiigigen 
Anderung der Haftungsbedingungen ihrer GréSenordnung nach genau 
festzulegen gestattet und eine Reihe von bemerkenswerten Fallen, die 

dem Oseenschen Grenzfall benachbart sind, anzusetzen gelehrt und 

damit eine Anregung gegeben hat zu einer vertieften Verbindung mit 

der physikalischen Richtung der Hydrodynamik und vielleicht zu einer 

Erweiterung der Grenzschicht- und Turbulenztheorie. In diesem Sinne 

scheint es besonders begriienswert, da auch in der Gottinger Schule 

neuerdings die Aufgabe in Angriff genommen wird, die Verhaltnisse 

im Kielwasser oder ,,Windschatten‘‘ eines bewegten Koérpers physika- 

lisch und mathematisch aufzuklaren und damit der Lésung des Problems 

des Formwiderstandes naiher zu kommen. Es ist zu hoffen, daB damit 

auch die schénen Arbeiten der Oseenschen Schule eine weitere Fort- 

entwicklung erleben werden!). 

ZWOLFTES KAPITEL. 

Ergebnisse der Turbulenztheorie. 

§ 85. Stabilitét und Turbulenz. 

1. Im Laufe der bisherigen Untersuchungen haben wir mehrfach auf 

den besonders technisch bedeutungsvollen Unterschied zwischen zwei Stro- 

mungsformen hingewiesen, die als laminar und turbulent bezeichnet 

wurden. Wir hatten gesehen, daB die stationare laminare Strémung, 

etwa zwischen zwei parallelen ebenen Wanden oder in einem zylindrischen 

Rohr, die sich mathematisch als das einfachste Integral der Stokesschen 

Gleichungen beschreiben lit, in Wirklichkeit nur unter der Bedingung 

bestehen kann, daB die auf den Vorgang bezogene Reynoldssche Zahl 

unterhalb eines gewissen kritischen Wertes ¥, gelegen ist. Bei einer 

VergréBerung dieser Zahl verwandelt sich der laminare in den turbulenten 

Zustand, der mathematisch nicht mehr mit den wblichen Mitteln formu- 

liert werden kann. Bei verschiedenen Versuchen (z. B. EK. Bose und 

W.Sorkau) hat sich sogar gezeigt, daB das Ubergangsgebiet vom 

laminaren zum turbulenten Zustand sich in mehrere scharf getrennte 

Zustandsgebiete zerlegen laBt, die man als Turbulenz I, Turbulenz IT 

1) Kinen yollstindigen Uberblick iiber alle widerstandstheoretischen Fragen 

gibt F. Eisner, Das Widerstandsproblem, Verhandl. des Intern. Kongr. fiir 

techn. Mechanik, Stockholm 1930. 
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usw. bezeichnet hat. Sie unterscheiden sich voneinander besonders durch 

das Verteilungsgesetz der mittleren Geschwindigkeit und durch die Ab- 

hangigkeit des Druckgefalles von der Durchstré6mungsmenge?). 

Es ergibt sich nun die hydrodynamisch wichtige Frage, ob das empi- 

risch gefundene Gesetz fiir den Ubergang von einer Bewegungsform in 

die andere aus den Grundgleichungen selbst ableitbar oder an welche 

mathematischen Bedingungen das Eintreten des turbulenten Zustandes 

gekniipft ist. Da der laminare Zustand, sofern die Reynoldssche Zahl 

kleiner als der kritische Wert ist, bei jeder Stérung sich selbst erhalt, 

so kann man ihn als stabil bezeichnen. Durch vorsichtiges VergroBern 

etwa der Geschwindigkeit kann man es erreichen, dafs auch nach Uber- 

schreiten der kritischen Reynoldsschen Zahl der laminare Zustand be- 

stehen bleibt. Da aber die geringste Stérung ausreichen wiirde, um einen 

plotzlichen Umschlag in die wirbelnde Bewegungsart hervorzurufen, so 

kann man den laminaren AbfluB oberhalb ®,, nicht mehr als stabil, muB 

ihn vielmehr als labil bezeichnen. Man sieht also, da das Problem 

der Turbulenz unmittelbar mit dem Problem der hydrodynamischen 

Stabilitaét zusammenhingt. Dieses Problem kommt aber darauf hinaus, 

zu untersuchen, ob eine Abhangigkeit zwischen Stabilitat und Rey- 

noldsscher Zahl auffindbar ist oder allgemein, welche Bedingungen 

vorhanden sind, damit ein stabiler Stro6mungszustand hergestellt werden 

kann. 

Im Anschlu8 an die sonstigen Methoden der Stabilititstheorie hat man 

seit Rayleigh?) und Kelvin’) die Untersuchungen so gefiithrt, da man 

der bisher allein beriicksichtigten ,,Hauptstr6mung* eine sekundare insta- 

tionire und mit den Bewegungsgleichungen vereinbare kleine Schwan- 

kungsbewegung tiberlagert und feststellt, ob diese St6rung den Charakter 

kleiner periodischer Schwingungen, die méglicherweise mit der Zeit (durch 

die Reibung) abnehmen oder den Charakter einer Exponentialbewegung hat, 

die sich mit der Zeit vergréBert. Diese Methode der kleinen Schwingungen 

ist von mehreren Autoren auf verschiedene Probleme angewendet worden. 
Die erste und ausfiihrlichste Behandlung des sogenannten Couetteschen 
Falles rithrt wohl von W. M. F. Orr*) und A. Sommerfeld®) her. Spiater 

) Vgl. den zusammenfassenden Bericht v. F. Noether, Das Turbulenz- 
problem, Z. f. a. M. M. Bd. 1 (1921), S. 125—138, wo die Literatur sehr aus- 
fiihrlich angegeben ist. 

*) Philos. Mag. (5, 34), 1892; Papers III, S. 575. 
*) Philos. Mag. (5, 24) 1887, S. 188 u. 272. 
‘) W.M. F. Orr, Proc. of the Royal Irish Acad. XX VII (A), 1907, I, S. 9ff; 

Il S! 69 ff 

5) A.Sommerfeld, Atti del IV. congr. intern. dei Matematici, Roma, 1908. 
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haben v. Mises!) und L. Hopf?) den strengen Stabilitatsnachweis fiir 
die Hauptstrémung erbracht. Hopf hat auBerdem im Anschluf& an die 
Sommerfeldsche Arbeit eine ausfiihrliche Diskussion der Schwingungs- 
formen gegeben und interessante Unterschiede fiir die durch die Rey - 

noldsschen Zahlen abgegrenzten Zustandsbereiche aufgedeckt. Die ent- 

sprechende Stabilitats- und geometrische Untersuchung des Poiseuille- 

schen Stromungsfalles im Kreisrohr verdankt man Th.Sex12). Die theore- 

tische Erganzung der von Mallock und Couette angestellten Versuche zu 

dem Fall zweier gegeneinander rotierender konzentrischer Zylinder ist 

neverdings von G. J. Taylor?) in einer groBen und bemerkenswerten Arbeit 

gegeben worden, die zwar das Problem der Turbulenz noch nicht aufklirt, 

wohl aber mehrere Resultate liefert (unter anderen auch den Einsatz, so- 

wie die Anordnung und GroBe der Zerfallwirbel), die sich auch quanti- 

tativ in guter Ubereinstimmung mit den Taylorschen Versuchen befinden. 

2. Um den grundlegenden Ansatz fiir den ebenen Fall zu geben, 

gehen wir etwa aus von der in § 4,8. 15 abgeleiteten Gleichung fiir die 

Stromfunktion 

Off OFOAET OFOAL 

at + dx Oy dy Ox 
Wenn wir dimensionslose GréBen einfiihren, d.h. alle Lingen auf eine 

(1) F(P) = yo 

konstante Abmessung und alle Geschwindigkeiten auf eine konstante 

Normalgeschwindigkeit beziehen, so nimmt die Gleichung eine Form an, 

die sich von (1) dadurch unterscheidet, daB » durch den Wert Zu 
1 

R 
ersetzen ist. Sei nun V,(y)=V, V,=0 baw. ¥ die Geschwindigkeit 

bzw. Stromfunktion der laminaren Hauptstr6mung, und sei 

die zu iiberlagernde, als zweidimensional vorausgesetzte Stérungs- 

bewegung, so kénnen wir 

V=VEU,, t=, P= Pow 

setzen. Beriicksichtigt man ferner die Gleichung 

F (Po) =0 

und vernachlissigt die Glieder, welche py und die Ableitungen in héherer 

als erster Potenz enthalten, so kommt 

Od4w Ody dV dow 
—- “_—_7~-=yddw. 

Q pe aa diene 

1) R. v. Mises, Heinrich-W eber-Festschrift, 1912, S. 252; Jahresber. der deut- 

schen Mathem. Ver. X XI, 1912, S. 241. 

2) Die entsprechenden Literaturangaben finden sichin den folgenden Paragraphen. 
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Wenn man nun unter Voraussetzung kleiner Oszillationen setzt 

w = f(y) et (Bt— ka) , 

so ergibt sich durch Einsetzen von (2) fiir f die Dire asa 

@V dh oe an 
(3) i]@—kY) (Fa +k a, =|= "|FeR — 2425 a 

die noch durch die Randbedingungen zu erginzen ist, die besagen, daB 

die Stérungsbewegung an den Riandern verschwinden muf. Setzt man 

B=fPitipe, I —— fi +itke, 

so bedeutet /, die zeitliche Frequenz, 7 die Fortpflanzungsgeschwindig- 

keit der Stérung und fp, die Ne che a) Nun gelangt man mit 

Hilfe von vier partikularen Integralen von (3) und den beiden Rand- 

bedingungen zu einer sogenannten Sikulargleichung fiir 6, die aukerdem 

k und y enthalt. Unser Problem ist also auf die mathematische Frage- 

stellung zurtickgefiihrt, ob unter den Wurzeln dieser Gleichng fiir be- 

liebige Werte von k und y (bzw. 8) solche vorkommen kénnen, die einen 

negativen imaginaren Bestandteil haben. Nur in diesem Falle wiirde 

die Stérungsbewegung instabil sein. Wir wollen den Gang der weiteren 

Untersuchungen an dem einfachsten Beispiel deutlich machen. 

§ 86. Stabilitiit der Strémung zwischen ebenen Wiinden’). 

Wir haben bereits friiher § 9 als einfachsten Fall die Strémung 

zwischen zwei ebenen Wanden betrachtet, von denen die eine ruht, 

wahrend die andere sich mit der Geschwindigkeit U, bewegt. Dann ist, 

wie damals gezeigt, fiir die stationiire und laminare Hauptstromung die 

Geschwindigkeit eine lineate Funktion der senkrecht zu den Ebenen 

gezihlten Koordinate 

je ius 
Uae h 

In diesem einfachsten Falle wird — , —0, und die Gleichung (2) des 

vorigen Paragraphen erhalt die Fone 

Joy to) 
yA Aw = A yy +- 

U ea + Ox A ws 

Mit den dimensionslosen Variablen 

ee: y Wi Uh 
— es tee = 9) es, Teeth ey sr Bete ars, 

') Vgl. etwa L. Hopf, Verlauf kleiner Schwingungen auf einer Strémung 
reibender Fliissigkeit, Ann. d. Physik, Bd. 44 (1914), S. 1—60. 
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erhalt man 

Qa) 4Ay = Rs. Aw+y 24). 
/ (ors fe 

Setzt man Ay=y, so kommt als Gleichung fiir 7 

Ay= KR E aah as sl: 

Mit der Substitution 

(3) w=el (Bz —k§) fy); . y= et be i) p(n) 

erhalt man schlieBlich fiir + und w die gewéhnlichen Differentialglei- 

chungen 

Le —k?p=iRC— ky) op, d r2 

d 
es i= op. 

(4) 

Setzen wir 
+ ER (9 — br) 

&R)s 
so entsteht die Gleichung 

(5) 

die sich mit Hilfe von Zylinder- oder Besselschen Funktionen mit dem 

Index { auflésen abt. Man erhalt die Lésungen 

[ may ee, 
(6) ag 

| (2a Zz" "BY Gz 2) 2 

Wenn man 2z einfiihrt und 

setzt, so geht die Gleichung fir f tiber in 

d? 
(7) EM epi = 0. 
Multipliziert man diese Gleichung mit sin 2 z und cos 4 z, so erhalt man 

/ 42 
. s (GEsin hz — Af cos nz) + 2 gisindz=0, 

(8) d (df aay 12 en 
falas © Az + Af sin z) +a Pt cosAz=0. 

Integriert man und eliminiert iE , so kommt 

g 2 

a : Te 9G) waa 1 

(9) fr =ccoshz +dsin hz +7, | gile’)sind(e’—2)de’. 
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Ein entsprechender Ausdruck ergibt sich fiir fz. Die allgemeine 

Losung hat also die Form 

(10) f= Ce4#+ De-¥*+ Afi t+ Bh, 

wobei die noch verfiigbaren Konstanten aus den Grenzbedingungen zu 

bestimmen sind, die in unserem Falle lauten 

j=0, 7=0 fir »=0 und y=1. 

Wenn 2, und z, die Werte der Variablen z fiir 7=0 und 7=1 be- 

deuten, so verschwinden die Funktionen f(z) und f2(%) sowie ihre 

Ableitungen, wenn wir zo als untere Grenze der Integrale (9) nehmen. 

Da dann C=D=O0 wird, so ergibt sich schlieBlich zur Bestimmung 

von f die einfache Gleichung 

| fr(@1) fe (es) 
| fix) falex) 

die bei gegebenem k und die zugehérigen Werte a lefert. Die voll- 

(11) =—(, 

standige Diskussion dieser Gleichung, die notwendig langwierig aus- 

fallen muf8 und von Hopf bis in alle Einzelheiten hinein durchgefihrt 

ist, ergibt nun das wesentliche Resultat, da fiir beliebige k und R nur 

solche # existieren, deren imaginiarer Teil groBer als Null ist, daB also 

in jedem Falle die méglichen Stérungen gedaimpft werden, oder daf die 

Hauptstromung sich stabil verhalt. Wenn f bekannt ist, so kennt man 
nbs ; . : A Ae 3 

das Verhaltnis mr und damit die Funktion f/f, die die Stromfunktion 

und das.System der Stromlinien liefert. Die Untersuchung der Funk- 

tion f fihrt nun zu einer Orientierung tiber den Verlauf der Stérungs- 

bewegung, der wesentlich durch die GréBenordnung von & bzw. von kR 

bestimmt ist. Hopf untersucht dabei drei Typen von Schwingungs- 

bewegungen. Wenn k§ klein, also die Reynoldssche Zahl kleinoder 

die Wellenlange groB (reeller Teil von z) negativ) wird, so ist die 

Dampfung in erster Naherung nicht von ® abhingig, d. h. die Stérungen 

verhalten sich wie Schwingungen ruhenden Wassers. Das System der 

die ganze Schicht erfiillenden zirkulierenden Grundschwingungen und 

ihrer stark gedampften Oberschwingungen, die sich nur auf einen Teil 

der Schicht ausdehnen, ist zu vergleichen mit der Schwingungsfigur einer 
Saite, deren Knotenpunkte die ganze Lange nach rationalen Zahlen auf- 
teilen (vgl. Abb. 106). Diese Schwingungsform kann als Grenzfall eines 
zweiten Schwingungstypus aufgefaBbt werden, der bei mittlerer GréBe 
von k® auftritt (z% und 2; konjugiert komplex) und dadurch charak- 
terisiert ist, dafi das ganze Strombild kontinuierlich im Sinne des Ge- 
schwindigkeitsabfalles in der Hauptstroémung verzerrt erscheint (Abb. 107). 
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Prinzipiell verschiedenes und nicht mehr durch Grenziibergang aus den 
ersten beiden Fallen ableitbares Verhalten zeigen die in Abb. 108 dar- 
gestellten Schwingungen vom dritten Typus (z) und z, konstant). Bei 
groBeren Werten von k® dringt sich die ganze Stérungsbewegung auf 

einen immer enger werdenden Bereich in der Nachbarschaft der Wande 

zusammen, wobei die Vorgiinge an den Wanden mehr und mehr von- 

einander unabhangig werden. Je gréBer kR wird, desto mehr Ober- 

schwingungen nehmen den Charakter des dritten Typus an, bis schlieb- 

lich die gesamte Stroémung sich in mehrere Stromschichten aufteilt, deren 

Schwingungstypus I 
Abb. 106. 

VICES LEL SL ¢ Y 

Schwingungstypus IT Schwingungstypus IIT 

Abb. 107. Abb. 108. 

Abb. 106—1i08. Schwingungsbewegung auf einer Str6mung zwischen ebenen Wanden. 

Phasen und Amplituden unabhingig voneinander sind und eine um 

so schwiachere Dampfung zeigen, je naiher sie der Wand legen. Jede 

Schicht nimmt ferner die Stérung mit der in ihr herrschenden Haupt- 

geschwindigkeit mit, wiihrend die Schwingungen des ersten und zweiten 

Typus bei kleineren kR mit der mittleren Geschwindigkeit der Haupt- 

strémung weitergefiihrt werden. Fiir den damit erreichten Grenzfall 

verschwindender Zahigkeit oder unendlich grofer Reynoldsscher Zahl 

ergibt sich aus der ersten Gleichung (4) 

B—kn=0, P=ky. 

Die jedem 7 entsprechende Stérung wird also von der Schicht unver- 

andert mitgenommen und verlauft unbekiimmert um die Stérungen in 

den Nachbarschichten. 
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§87. Die Stabilitiit der Poiseuillestromung. 

1. Die in § 85 gegebenen Gleichungen fiir den ebenen Fall lassen 

sich leicht mit Hilfe der Umrechnungsformeln auf Zylinderkoordinaten 

iibertragen!). Mit 

erhalten wir nach § 8 fiir WY die Differentialgleichung 

“ lon or Mier oweo as (1) DP=yDD¥®, 

wo D. die Operation 

Ot | r Oz Or r Or Oz fr OZ 

ae 10,28 
02? 

2 a8 : a 1 : 
bedeutet und » bei dimensionslosen Groen durch qr ZU ersetzen ist. 

Denkt man sich nun wieder der bekannten laminaren Hauptstr6mung 

eine beliebige zweidimensionale Storungsbewegung tiberlagert, setzt also 

P= Po +w=—/rVdr+y 

und vernachlassigt die quadratischen und héheren Glieder von y, so 

ergibt sich 
) 0 2 V 1 dV\o0w 

a (oe lee iP hie, See 

In diesem Falle haben wir aber fiir die Geschwindigkeit der Haupt- 

stromung einen in 7 quadratischen Ausdruck 

2 m2 V=A(r, —7?). 

Setzt man diesen Ausdruck in (2) ein, so bleibt 

0 ers (2a) st Ali — 9%) Dw=rDDw. 
Oz 

Der oben bereits benutzte Ansatz 

W = f(r) er(Pi—ke) | Dw=g(r) et (Pt — kz) 

fiihrt aber durch Hinsetzen in (1) zu den beiden Differentialgleichungen 

tte 2 2 d? ld 2 

3 
| b= kl} — Pilg = 75 — — So hg, 

° pst a oe, 
dr? r dr : = g . 

Die Randbedingungen besagen, daB 7 und = a am Rohrumfang (7 = 79) 

verschwinden und 7==0 keine Singularitiit sein soll. 

*) Vgl. Th. Sexl, Zur Stabilitatsfrage der Poiseuilleschen und Couetteschen 
Strémung, Ann. d. Physik, IV. Bd. 83, 1927, S. 835; ferner Ann. d. Physik, IV. 
Bd. 84, 1927, S. 807. 
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2. Bevor wir die Resultate der Diskussion der Gleichungen angeben, 
wollen wir zwei Spezial- bzw. Grenzfalle kurz betrachten, namlich den 

Fall reibungsloser (yv=0) und ruhender ziher Flissigkeit (A= 0). 

Im ersten Falle gibt (2a) 

a? I hyp : (4) te — ede — Bl) (Bk Ale —r9) =0, r ar 

wahrend 1 fiir r=0 endlich sein und fiir r=ry verschwinden soll. Die 

Gleichung Cae el sbaeyy, 0 
dr? r ar ma 

wird, wie wir bereits friiher bemerkt haben, durch Besselsche Funk- 

tionen 1. Ordnung mit imaginirem Argument gelost in der Form 

f=rBy(tkr) =r(CJiGkr) + DAP tkr)] =r[(Chi(kr) + DKi (kr). 

Da die (Hankelsche) Funktion K, fiir kleine Argumente wie = 

unendlich wird, mu8B D=O gesetzt werden, und da ferner J,(kr) keine 

reelle Nullstelle im Endlichen hat, so muf8 auch C=O sein. Es bleibt 

also nur die singulire Lésung 

Bia kA(rs —r), 

bei der aber komplexe 6 ausgeschlossen sind. Damit ist wieder das 

friiher angegebene Resultat plausibel gemacht, da an der Grenze bei 

sehr groBen Reynoldsschen Zahlen nur Schwingungen auftreten, die 

auf eine Schicht r=const konzentriert bleiben und mit der Geschwindig- 

keit der Hauptstro6mung fortschreiten. 

Wenn die Fliissigkeit zihe ist, aber ruht, so sind die Storungs- 

bewegungen der Gleichung 

(D—-, - gy) Dw =0 
: he : 

zu entnehmen. Da die Operationen D und Dae ar vertauschbar sind, 

erhilt man die allgemeine Lésung als lineare Kombination der Lésungen 

f, und f, der beiden Gleichungen 

eee ee 
| (onthe 1B rerp ao, 

/- a , . 

wo #= = als positiv anzunehmen und - —k?—k’? gesetzt ist. In den 
v 

y 

allgemeinen Integralen 

i hed He Cerr). 
6 
(6) fe = Cod 1(k'r) + de Hy (k'r) 

Miller, Theorie der zihen Flissigkeiten. . 21 
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mu man, da ip. fiir r—O endlich bleiben soll, d;—=d.=0 setzen. Dann 
r 

fordern die Randbedingungen das Verschwinden der Determinante 

Ti(ikro) Falk’) | 
pan == 08 

(7) ikJolikro) k’Jo(k'ro) | 
Wenn & klein ist, erhalten wir fiir die am wenigsten gedampfte Grund- 

schwingung die Gleichung 

eee mf ¢$ 
(8) mal ; ‘todo | a ro)=Al] 5. re), 

die die kleinste Wurzel | = *7>=5,136 mit = any) besitzt. 
0 

Die Stromfunktion der Storung 

(9) y= [ral 1) —rda (thr) ran e— Vt—ikz 

ergibt wieder eimen Bew een der im Meridianschnitt dem 

Gesetz des oben beschriebenen ersten Schwingungstypus entspricht. 

Nur gehéren hier nattirlich wegen der Achsensymmetrie die beiden 

gegentiberliegenden Zirkulationen demselben Wirbelsystem an. 

So1Ver i Sebagree Fall. Die any der Gleichungen (3) geht mit 
ii Atk t - : 

aay) amarante F 7 = (Ar beh — == €; liber in 

d* (10) Tat gle + 2)=0- 

Das durch eine bestandig konvergente Reihenentwicklung darstellbare 

Integral dieser Gleichung lautet 

sin Veo: we =a) +(e: pis em 
il —_— 

Ql) m= =" Jaru: J1 (2 Vera) ae: eit 

& 

Das andere, logarithmische Integral ist wegen der Randbedingungen 

auszuschlieBen. Es ergibt sich dann durch Integration der zweiten der 

Gleichungen (3) nach der Methode der Variation der Konstanten 

UG r 

s a) (12) L=¢,° 5 Slike): [He (Gkr)gir)dr — HY (ier) [Ja er) gulr )dr| + oJ i(ikr). 
0 0 

Wenn man die Randbedingungen am Rohrumfang aufstellt und die 

Determinante der entsprechenden beiden homogenen linearen Gleichungen 

bildet, so ergibt sich nach einfacher Umformung der Gleichung fiir £ 

1 

(13) [Ar(tkr) gi (7) dr=(. 
0 

Sex] hat nun ohne numerische Auflésung den mathematischen Nach- 
weis erbracht, daf diese Gleichung im Falle grofer kR, d.h. im Be- 
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reich der asymptotischen Entwicklung der Partikularlésungen, nur durch 
solche Werte von # erfiillt werden kann, die einen positiven imaginaren 
Bestandteil haben. Im iibrigen ergibt sich, daB das Verhalten der Poi- 
seuilleschen Strémung in Rohren gegentiber achsensymmetrischen St6- 
rungen vollig analog ist dem der linearen Couette-Strémung zwischen 
parallelen Wanden. Wahrend bei kleinen Werten von k® die Flissig- 
keit als Ganzes schwingt, analog der Grundschwingung und den Ober- 

schwingungen einer eingespannten Kreismembran, werden bei gréferen 

k® diese Schwingungen in Richtung der Hauptstromung, und zwar am 

starksten in der Rohrachse, nach und nach verzerrt, bis schlieBlich bei 

einem bestimmten Wert von / ein Zerreiben stattfindet und die Storung 

in einzelne Schichten zusammenriickt. Bei verschwindender Reibung 

bleibt die Stérung auf eine unendlich diinne wirbelnde Schicht += const 

beschrankt. Es ergibt sich ferner, da alle Schwingungen fiir endliche R 

gedampft sind, wahrend im Grenzfalle ~->0 die Hauptstroémung sich 

gegen die stationaren Schwingungen im indifferenten Gleichgewicht be- 

findet. 

§ 88. Stabilitit der Fliissigkeitsbewegung zwischen 

rotierenden Zylindern. 

Der besprochene Fall einer zwischen ebenen Wanden eingeschlossenen 

Flissigkeitsstr6mung kann als Grenzfall der allgemeinen Couetteschen 

Strémung einer kreiszylindrischen Flissigkeitsschicht aufgetaBt werden, 

die von zwei rotierenden Kreiszylindern begrenzt wird. Es wurde be- 

reits friiher auf die experimentellen Untersuchungen von Mallock und 

Couette hingewiesen, die im wesentlichen das Resultat brachten, daB 

die Gesetze fiir die Geschwindigkeitsverteilung und die auftretenden 

Reibungsmomente sich wesentlich anders verhalten, sobald nach Uber- 

schreiten einer gewissen Grenzgeschwindigkeit der laminare in den turbu- 

lenten Zustand iibergeht. Wenn etwa der eine Zylinder ruht und der 

auBere mit einer Geschwindigkeit Ursa» rotiert, ferner 0=1r,—1, die 

Schichtdicke der Fliissigkeit bedeutet, so ergibt sich als kritische Rey- 

noldssche Zahl der Wert 

9, = 7" 2 1900. y 

Neuerdings hat nun G.J.Taylor1) die Versuche auch mit Riick- 

sicht auf die (optische) Feststellung der turbulenten Stromungsverhilt- 

) Coiilay lor Stability of a Viscous Liquid contained between two Rotat- 

ing Cylinders, Phil, Trans., Bd. 223 (1923), S. 289; ferner Proceed. intern. con- 

gress Delft 1924 u. Z.f. a. M. M., Bd. 5 (1925), 8. 250—253. 

rakes 
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nisse mit vollkommeneren Mitteln wieder aufgenommen und zugleich 

eine eingehende Stabilitatsrechnung durchgefiihrt, die insofern bemerkens- 

wert ist, als dadurch der erste Fall ermittelt wurde, bei dem die laminare 

Bewegung einer zahen Fliissigkeit sich als instabil erwiesen hat. Die 

Rechnung, die auBerst umfangreich und schwierig ist, und daher nur 

iibersichtsweise gegeben werden kann, nimmt ihren Ausgang von den 

allgemeinen, auf Zylinderkoordinaten transformierten Bewegungsglei- 

chungen, die sich bei Annahme von Achsensymmetrie entsprechend ver- 

einfachen (vgl. § 8, S. 29). Wenn wir der in § 55 festgestellten statio- 

naren Grundbewegung von der Form 
Ws 

rT? Wy — 13M, ie (1 a al Vp=4rt2; Aaee 
Te rs 

, 

r 

eine dreidimensionale St6rungsbewegung tiberlagern, d. h. 

Ur=U;, Vp=VeotVvy, vz2=% 

setzen, und nach Hinfitthrung in die Bewegungsgleichungen die quadrati- 

schen und héheren Glieder der Stérung und ihre Ableitungen vernach- 

ldssigen, so erhalten wir das System 

' 1 Op / B [ Ov, 0, Ovr Vi oa ) A v, Ae hoe UE eet ee ret. 

o Or zi + 2} OF eer Oz" r ot 7? 

: Sy at Day, 1 ea een sey ees vp  vp| __ Ovp 
( ) Av, ty ) A Voep == 02? r2 <= Ot? 

1 Op Ov, Ov: 
= | 0, - | = 

0 Oz * | 10s a Ot 

einfiihren. Die Kontinuititsgleichung wird 

(2) (rot), dlrs 
Or Oz =0. 

Die Grenzbedingungen lauten 

— , 2 oo 

Ur = Vp =0,=0 fur r=r und r=75. 

Nehmen wir fiir die Stérungskomponenten die Ausdriicke 

Up = U1 Cos Agere, 

(3) Vip = Uz Cos Azelt, 
Vz = Us sin Azeft , 

; F ded tae oe ee WO U1, U2, Us Funktionen von r allein sind und eliminieren aus den Glei- 
chungen den Druck, so entsteht . 
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OU, 

a ae Or 

1 - B 
(4) (ty — a — 8 — Sg 2A, 

id 0 / 12 B 

h Or Ea Phiny, 

+dAus=0 

Us = -2(4+ 2)u—1(4—v—2 U 1° 

Diese Gleichungen kénnen mit Hilfe von Besselschen Funktionen 

gelést werden. Wenn wir die allgemeine Losung der Gleichung 

(5) (jat+g tH a)f=0 
durch 

(6) f=adi(kr) + ce Ni (kr) = By (kr) 

darstellen, so kénnen die Konstanten c; und cz so bestimmt werden, 

daB f fir r=, und r=r, verschwindet. Umgekehrt kann bekanntlich 

jede stetige Funktion f(r), die an den Grenzen 7; und rz verschwindet, 

in eine Bessel-Fouriersche Reihe 

co 

(7) f(r) = >) as Balkin) 
4=1 

entwickelt werden, wo die a, durch die Integrale 

« = 7 | il) Biller) ar, 
"1 

T2 
2 

Hi = | B2(kir)r dr = 3 (r3 B? (hire) — 1? B3 (kirs)| = | Bo(kir) rdr 
vr} 

v1 

bestimmt sind. Wenn man nun fiir «, eine Reihe von der Art (7) nimmt, 

so haben wir fiir uv. die Gleichung 

(9) at ee Eis aH Up — 24 > abi (kin) . 
Or? r Or 7 

Die Lésung setzt sich zusammen aus der Losung der homogenen 

Gleichung 

(10) ug =csJi(td'r) + ca Ni (td'r) 

und der Reihe 

(11) ies bs8 1(kir), 

wo fiir 6, zu setzen ist 

2Aa; ny == . 
(it + 124 f 
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Die Grenzbedingung uw.—0 fiir r=r, und r=ry, gibt ferner 

Gs — 61 — Os 

ie vollstindige Loésung der dritten Gleichung (4) anzugeben, be- m die volistandige LOsung { £ 

trachten wir zunichst die reduzierte Gleichung 

2 to ) 

™ 

~ 
te 

: = 
= = J) ~_~ — 

Wegen 

erhalten wir als Lésung 

(12) Uy = 05 + cedo(id'r) +7 No(id’r). 

Die vollstandige Lésung hat dann die Form 

(13) Us = Ug busy =es + cedJo(id’r) + ¢7No(td'r) + XS diBo(kir). 

Fiir die Koeffizienten d; erhalten wir durch Einsetzen und Benutzung 

der friiher gegebenen Ausdriicke fiir 0, 

oo 

Sai fe (A? + k?) Ba (ker) = >'v(k? + 22) ai Ba (ker) 
1 

(14) ; 
= 1 2Aa 2(4 > ' Bi (kin). 

+ 2| Tinga — (hE + 4) (ir) 

Man sieht schon aus diesen Andeutungen, dal die weitere Behand- 

lung, insbesondere die Aufstellung der Sakulargleichung, die aus den 

Grenzbedingungen gewonnen wird, auf grobe rechnerische Schwierig- 

keiten st6Bt. Diese fiir das Stabilititsproblem mabgebende Gleichung 
?} liefert die Frequenz 6 in Abhingigkeit von den Reynoldsschen 

Ors W273 ae ne : : % ‘ 
Zahlen ** und —** und dem Geschwindigkeits- bzw. Radienverhiltnis 

Vv Vv 

oa bzw. 2 beider Zylinder. Taylor beschriankt sich bei der auBerordent- 
1 1 

lich schwierigen Diskussion ferner auf die Annahme, daB die Radien- 

differenz r.—r, gegen 7, nur klein ist. Die wesentlichen Ergebnisse lassen 

sich folgendermafen zusammenfassen: Bei gleichsinniger Rotation der 

Zylinder weicht die Stabilitatsgrenze, wie die Darstellung (Abb. 109) 
zum Ausdruck bringt, wenig ab von der von Rayleigh fiir reibungslose 

Flissigkeiten gefundenen, die durch die Beziehung @,r?=@ 73 dargestellt 

ist. Wenn @,7?< @273, so ist jedenfalls Stabilitit vorhanden. Wenn 
Wy is We 
= = wird oder <0, d. h. die Drehung beider Zylinder entgegen- 
Ws ry Wy c Y ie 

gesetzt ist, so tritt fiir einen berechenbaren Grenzwert, etwa der AuBeren 
Wy Me Reynoldsschen Zahl , in Ubereinstimmung mit dem Versuch In- =; ‘ 
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stabilitat auf. Ist der &uBere Zylinder in Ruhe und der innere in Be- 
wegung, oder rotieren beide Zylinder in gleichem Sinne, so charakte- 

Instabil 

160 

Berechner o 
eobachtet 

-250 -£00 — 150 - 100 —50 0 50 100 750 200 

Abb. 109. Stabilitatsgrenze bei konzentrisch rotierenden Zylindern. (Nach Taylor.) 

gefarbie issigket 
nN VQ S/F OW Ly 

SS yyy) , L, 

WME E@@EEEEEE@LLL 

innerer Zylinder duberer Lylinder 

Abb. 110. Stromlinienbild bei gleichsinnig rotierenden konzentrischen Zylindern. 

(Nach Taylor.) 

risiert sich der Eintritt der Instabilitat durch die Bildung von Wirbel- 

reihen in der Meridianebene, die abwechselnd entgegengesetzten Drehsinn 

haben und den ganzen Zwischenraum zwischen den Zylindern erfiillen. 
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Diese Entstehung konnte versuchsmaBig dadurch bestatigt werden, dak 

eine gefirbte Fliissigkeit als diinne Schicht wher den inneren Zylinder 

verteilt wurde, die sich dann entsprechend der Figur zu aquidistanten, 

die Wirbelgebiete umschlieBenden Ringen zusammenzieht (Abb. 110). Bei 

gegensinniger Drehung der Zylinder bilden sich zwei Reihen von Wir- 

beln, die eine in Berithrung mit dem auBeren und die andere, starkere, 

fi gefarbte Flissigkei 
YA é ¢ 

WW \ 

hs \§ / nes \ 
~~ innerer Zylinder awherer Zylinder 

Abb. 111. Stromligienbild bei gegensinnig rotierenden konzentrischen Zylindern. 

(Nach Taylor.) 

in Berthrung mit dem inneren Zylinder. Bei den Experimenten legt 

sich die gefarbte Fliissigkeit nur um die stirkeren Wirbel, wahrend das 

Wasser an den Stellen der theoretischen &uBeren Wirbel klar bleibt 

(Abb. 111). Sowohl der Einsatz wie die Anordnung (GréBe und Unter- 

teilung) der Wirbel zeigt nach der Rechnung auBerordentlich gute Uber- 

einstimmung mit den Versuchen; die Abweichung der Reynoldsschen 

Grenzzahlen betrigt in den meisten Fallen weniger als 2%. 

§ S89. Stabilitiit und Grenzschicht. 

Die MiBerfolge, welche die Versuche, eine kritische Reynoldssche 

Ubergangszahl auf theoretischem Wege zu finden, gezeitigt haben, gab 
den Anlaf, die Stabilitaitsbetrachtungen nach verschiedenen Seiten zu 
erweitern. Prandtl machte bereits auf der Mathematikertagung in Jena 
1921 auf einen Gesichtspunkt aufmerksam, der in der Grenzschicht- 

theorie eine Rolle spielt!). Wenn die Fliissigkeit (mit kleiner Reibung) 

einen abgerundeten Koérper umstrémt, so tritt in dem Gebiet zwischen 

') L. Prandtl, Bemerkungen iiber die Entstehung der Turbulenz, Z. f. a. M. M., 
Bd. 1 (1921), 8. 431-- 436. 
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dem Geschwindigkeitsmaximum und der Ablésungsstelle der Fall ein, 
daB das Geschwindigkeitsprofil der Grenzschicht eine Einbuchtung 
(einen Wendepunkt) zeigt. Auch bei der Poiseuillestrémung oder 

der Strémung zwischen ebenen Wanden kénnen solche Kinbuchtungen 

hervorgerufen werden durch Wirbelbildung oder durch Unebenheiten 

der Wandung. Zur Vereinfachung der Rechnung ersetzt Prandtl nach 

dem Vorgang von Lord Rayleigh das Geschwindigkeitsprofil durch 

einen geknickten Linienzug, wodurch die Differentialgleichung durch eine 

Differenzengleichung ersetzt wird. Es ergab sich nun (zunachst bei Ver- 

nachlassigung der Reibung), daB jede noch so kleine Einbuchtung des 

Profils von der Art ¢ (Abb. 112) einer labilen Strémungsform entspricht. 

Die Abschatzung des Reibungseinflusses (nach einem noch zu besprechen- 

den Verfahren) fiihrte weiter zu dem 

nicht erwarteten Ergebnis, da die 

Reibung eine instabilisierende Wir- 

kung ausiibt, d. h. eine Anfachung 

(negative Dampfung) der Ray- 

leighschwingung bewirkt, so dab 

selbst fiir die zunachst stabilen Falle 

a und 6 (Abb. 112) eine, wenn auch Abb. 112. Geschwindigkeitsprofile. 

relativ schwache Labilitat entsteht. 

Um den Gang der Prandtl-Tietjensschen Rechnung!) zu zeigen, 

gehen wir aus von der Differentialgleichung (3) des § 85 fiir die Funktion 

f(y), die als Faktor in der Stromfunktion 

y = ellie — Bt) f(y) 

der Stérungsbewegung auftritt. Nennen wir V die Geschwindigkeit der 

Hauptstrémung lings des als geradlinig angenommenen Profils, so er- 

gibt sich 
ai fides BV (1) (V — 5) (Gyn — By) — Ff Gp =O 

Sind nun v), und v, die Komponenten der Stérungsgeschwindigkeit, 

so folet aus der Kontinuitatsgleichung 

ne Ow cite pele — 7 Ovy 

~ dy k oy 

Wir konnen also in der Gleichung BF f durch vy, ersetzen und er- 

halten dann 
a\ (my 5 \_ eV _ 

(la) ( = Fe (Fat kPvy] — vy dy? 0 

1) Vgl. O. Tietjens, Beitriige zur Entstehung der Turbulenz, Z. f. a. M. M., 

Bd. 5 (1925), S. 206—217. 
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Die Ersetzung des stetig gekriimmten Geschwindigkeitsprofiles durch 

ein aus Geraden bestehenden ,,geknicktes“ Profil hat den Vorteil, daB 

das letzte Glied von (la) innerhalb der einzelnen Streifen verschwindet 

und daher unter der Voraussetzung, daB der erste Faktor Null ist, die 

einfache Gleichung 

o? vy OT (2) By k?v, = 0 

tibrigbleibt, die die Lésung besitzt 

(3) vy =ASinky + Bos ky. 

Der Ansatz der Grenzbedingungen liefert dann wieder die Bestim- 

mungsgleichung fiir f in Form einer Determinante. 

Was nun den Einflu8 der als klein vorausgesetzten Zahigkeit angeht, 

so ist die Abschatzung so durchgefiihrt, da alle Glieder von der GroBen- 

ordnung v,  ... vernachlassigt sind, und nur die GréBe yy» als mab- 

gebend berticksichtigt wird. Das Verfahren kommt darauf hinaus, dah 

nicht die gesamte Grenzschicht, sondern nur eine schmale, in unmittel- 

barer Wandnihe gelegene Teilschicht {von der GréBenordnung | 5 

die durch den ersten Streifen des Geschwindigkeitsprofils definiert ist, 

als reibende Flissigkeit aufgefaBbt wird. 

Die Geschwindigkeitskomponenten miissen dann aus drei Teilen zu- 

sammengesetzt werden, aus denen der Hauptbewegung V, der Stérung 

Urs oe soweit die Reibung vernachlassigt ist, und der Zusatzbewegung 

ve US: die durch die Zihigkeit und das Haften der Fliissigkeit lings 

der Wand bedingt ist. Dann entsteht aus der Stokes-Navierschen 

Gleichung, ebenso wie friiher gezeigt, die Grenzschichtgleichung 

(4) Ov2» V OvV2x on OV a O2 Vd 

ot Ox "Y oy dy? 

Wegen der linearen Abhangigkeit der Geschwindigkeit V von y kann 
man setzen 

dV dy ee AV 
V oe ane dy ¥? 

mit 
ei Ovo . OVS 

div p, = —— a=) 
Ox oy 

erhalt man dann durch Ableitung von (4) die Beziehung 

(5) OC Vou d V (he Voy é 08 Voy 

Otdey Py dy Y Ox dy = Oy 

Fiihrt man noch die Stromfunktion y der Stérung p, ein durch 

w = eil(kx — iG) fly), 3 — = ei(ka —£t) ply) ; 
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d* a (d 5 Dah on hilhak = Ais (5a) f alee ky 8) ply) 
Setzt man 

y= ae 

| B 

und fiihrt die Variable 

Le, vies 
ee Sh ae 

dV. —\3 dV k\3 

(May #1”) aoa 
ein, so erhalt man aus (5a) 

(5b) p (2)—tzp(z)=0, 

eine Gleichung, die, wie wir bereits wissen (vgl. § 86, S. 317), auf Bessel- 

sche Funktionen von der Ordnung + fiihrt. 

Wenn man im besonderen annimmt, daB die Fortpflanzungsgeschwin- 

digkeit 
8 . 

C= oe (6 = Pr ae 12) 

so groB ist, daB die Schicht, deren Geschwindigkeit V mit c iiberein- 

stimmt, schon merklich auSerhalb der Grenzschicht von der Dicke 

s=|/5 liegt, und wenn y’ die Ordinate fiir Vc bezeichnet, so wird 

Ce at Woy 
a dy 4 BLE 

Wenn 6 <y’, so wird 

dV 
Cpa: 

oder 

dV kyfy aVq/ rv 
dy Py J B, dy (ke) 

<1 

Dann kénnen wir aber an Stelle der Gleichung (5b) die Naherungs- 

gleichung setzen 

(6) gp’ (n) = —tp()- 
Die Konstante der Lésung 

Sen jay, 
(7) p(n) = const -e |? 

ist so zu bestimmen, daB v,=0 fiir 70, also 

(Viao re (v2q,)o 
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wird. Wenn die Geschwindigkeit der Rayleighschwingung den 

Wert hat 
(Vi a)o = ceika—Bt) | 

so wird 

(8) 
er 
Saal 2 

/ i(ka2— Pt) 
Von—= —cel2 -e P 

und nach der Kontinuitatsbedingung 

9 / vay [vy ; ae gika— Br). 
( ) Voy = Cc 2 } ) B 3 

fiir groBes 7 erhalten wir den asymptotischen Wert 

bet Py i(ea—Bt 

ee 
(Uoylo = C~ ~ k|/ gike—Bt) 

Da aber fiir eine reibungslose Flissigkeit wegen 04, =0 tur y==0 

Vy =AGinky, 

so erhalt man 
a (Ov, 

) — — A > 
(Vix)o k rie v 

also 
cetkx—Ppt)—7A 

oder af 

hes ad Le te ; 
(10a) (Y2y)o0 = — A y2 k| B 

Man kann nun die Zahigkeitswirkung nach Prandt] angenihert da- 

durch beriicksichtigen, daf{ man annimmt, dafi die Geschwindigkeit 

(oie bereits an der Wand vorhanden wire, im tibrigen aber die Ge- 

schwindigkeit wie in der idealen Strémung verteilt sei. 

Nach dem hiermit charakterisierten Naherungsverfahren sind nun 

einige besondere Profile durchgerechnet, d. h. die L6sungen der ,,idealen‘‘ 

Differentialgleichung fiir einige Profilstreifen unter Beriicksichtigung der 

abgeanderten Grenzbedingungen aufgestellt worden. Dann ergeben die 

Randbedingungen (fiir das Verhalten an der Wand und an den Uber- 

gangen der Streifen) ein System von homogenen Gleichungen fiir 8 von 

einem Grade, der mit der Streifenzahl wibereinstimmt. 

Tietjens hat ferner fiir ein spezielles Beispiel die Geschwindigkeits- 

verteilung und das Strombild der Stérungsbewegung in der Wandniihe 

ermittelt. Dabei wurde fiir die laminare Hauptstrémung ein Profil 

zugrunde gelegt, wie es sich in einem offenen Kanal von rechteckigem 

Querschnitt (15 «25 cm2,) ergibt an der Stelle, wo die turbulente Be- 

wegung gerade im Entstehen begriffen ist, und zwar in einer Ent- 

fernung von /=320 cm vom abgerundeten Einlauf bei einer Durch- 
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schnittsgeschwindigkeit V=12 cm/s. Wenn man diejenige Wellenlange 
benutzt, die am schnellsten anwichst, so findet man 

27 
A= a= 

: r V 
Ferner ist (i2)0= 769 

SEO, FS ORT em , 

=1,2 cm/s angenommen. Die Stromlinien, die in 

der Abb. 113 wiedergegeben sind (bei fiinffacher VergréBerung der Ordi- 

| 

3 
J 

Le 

I Phase ID Phase 
— 

I Phase IV Phase L Phase 

Abb. 113. Theoretisches Strombild einer Storungsbewegung in der Nahe einer 

ebenen Wand. (Nach Tietjens.) 

nate), sind auf einen Beschauer bezogen, der sich mit der Phasengeschwin- 

digkeit a mit der Fliissigkeit mitbewegt. In diesem Bezugssystem ist 

die Bewegung bis auf 

das zeitliche Anwach- 

sen der Storung statio- 

nar. Das berechnete 

Bild hat manche Ahn- 
lichkeit mit den ent- 

sprechenden photogra- 

phischen Aufnahmen 

der wirklichen turbu- 

lenten Bewegung in 

einem Kanal  (vgl. 

Abb. 114). 

Abb. 114. Turbulente Strémung in’ einem Kanal. 

(Nach Tietjens.) 
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Das entscheidende Resultat der Rechnung ist jedenfalls dieses, daf 

der imaginire Teil B. von f in allen Fallen, d. h. fiir alle Wellenlangen A, 

positiv ausfallt. Auch die strengere Auflosung der Differentialgleichung 

(6) mittels Besselscher Funktionen, die von Tietjens unter teilweiser 

Benutzung graphischer Hilfsmittel durchgefiihrt wurde, hat keine wesent- 

liche ‘Abinderung dieses Ergebnisses gebracht. Der damit eingeftihrte 

Widerspruch mit der Erfahrung, die doch unbedingte Stabilitat der 

Laminarstromung unterhalb einer bestimmten Reynoldsschen Zahl er- 

gab, kann also nur dadurch beseitigt werden, daB nachgepriift wird, 

ob die Voraussetzung, d.h. die Vernachlassigung der Kriimmung des 

Geschwindigkeitsprofils, nicht ein verschleierndes Moment in die Rech- 

nung hineinbringt. 

§ 90. Einflu8 der Kriimmung des Geschwindigkeitsprofiles. 

Der Nachweis, daB die Kriimmung des Geschwindigkeitsprofiles fiir 

das Auftreten eines Stabilitatsbereiches maBgebend wird, ist neuerdings 

in gewissem Sinne von W. Tollmien!) in einer ausfiihrlichen und 

ertindlichen Arbeit gebracht worden, in der im wesentlichen an dem 

Prandtl-Tietjensschen Grundgedanken festgehalten, aber eine stetige 

Anderung des Geschwindigkeitsgradienten in der Grenzschicht zugrunde 

gelegt wird, wie sie der Wirklichkeit entspricht. Die weitere Abweichung 

gegeniiber Tietjens besteht darin, dafi Tollmien auf die gesonderte 

Grenzschichtgleichung verzichtet und auf die allgemeine Stérungs- 

gleichung 

(1) VO == Gt acre) 

zurickgeht, deren Losungen einer genauen funktionentheoretischen Ana- 

lyse unterworfen werden. Wenn k als groB vorausgesetzt wird, erhalt 

man zwei erste Naherungslésungen /, und f, von der Form 

(2) h=yPily); fe= Poy) + Af ley, 

1 1 , 1 > fe 4] rey . ir <Tey 1] » Py ~y 1 5 die zugleich die reibungslose Stérungsgleichung befriedigen. Wéahrend 

aber das eine Integral /; in dem besonderen Punkt V = c¢ = E regular bleibt 
- > 

erhalt das andere Integral dort eine logarithmisch unendliche Ableitung. 
Fur einen gewissen Bereich um die Singularitat muB also fy jedenfalls 
korrigiert werden. Mit der Substitution 

y Sei 

yY=(kKRV5) syn =e 
Hie) 

1) W. Tollmien, Uber die Entstehung der Turbulenz, Nachrichten der 
Gesellsch. der Wissensch. zu Gottingen, 1. Mitt., 1929, S. 21—44. 



§ 90. EinfluB der Kriimmung des Geschwindigkeitsprofiles, 335 

wobei der Zeiger 0 sich auf die Stelle y=0 bezieht, entsteht aus der 
Storungsgleichung bei Vernachlissigung von ¢2 und der héheren Potenzen 

(3) baz Sp Nn 0 f" — a 0 a 

Bezeichnen wir die Korrektur mit ¢fs;, so genugt fo, der Gleichung 

—=— Ef 4 AK 

uy ms) UR 

Es zeigt sich dann durch eine genaue Diskussion der Lésung, daB 
fo fiir positive y von der Form 

Vu 

Seta L le y 
0 

ist, beim Ubergang zu eo y dagegen in 

(eae V, ® flg|y|— ith, 

iibergeht, da also die Ubergangssubstitution in /, im Hinzutreten eines 

imaginaren Teiles und damit eines Phasensprunges in der «-Komponente 

der Stérung besteht. Die Breite des Ubergangsstreifens (des abzugrenzen- 

den Gebietes um den singularen Punkt) berechnet sich zu 

2Qé || = 2(kRV 6) $6 nl. 

Als weitere Integrale erhalten wir die Lésungen der zugehérigen 

homogenen Gleichung, also 

(4) i "=? AL 

woraus z. B. das bei Tollmien allein gebrauchte /, sich ergibt 

(4a) p= jut Een 3] dydy. 

Wenn man die entsprechenden Lésungen fiir die Nachbarschaft der 

Wand (V=0), und zwar fiir den Fall, daB c>V, also die kritische Stelle 

auBerhalb der betrachteten Schicht liegt, diskutiert, so ergibt sich wieder 

die von Tietjens aus der Grenzschichtgleichung abgeleitete Losung /; 

pee ae wk Re yo 

Das neue Resultat der Tollmienschen Untersuchung besteht darin, 

da& zu dieser ,,auBeren Grenzschichtlésung* im Fall V’’== 0 im kritischen 

Punkt eine zweite ,,innere Grenzschichtlésung® hinzutritt. 

Tollmien wahlt nun ein Profil V(y), das vom Wert 0 bis zu einem 

Maximalwert V,, steigt, den es dann beibehalt, ein Profil, wie es z. B. 

fiir die Geschwindigkeitsverteilung bei einer Strémung langs einer Platte 
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vorkommt. Die Randbedingungen fiir den Beginn des Gebietes v= Ve 

und fiir die Wand (Index w) sind 

| C1 (fim sls ki ay sie C2 (fam == k fom) = C1 Pim + C2 (Pam = 0, 

5 
é . 

(5) | coftw + Cofew — a (cif + C2 fee) =0- 
3U 

Mit 
1 

fou —— D und Nw = — oa - 

3 Ww 
A 

erhalten wir aus der entstehenden Determinantengleichung 

‘ a " 

Nw © Pim fam — Pemliw 

Die graphische Behandlung dieser Gleichung besteht darin, dai man 

6) .s D (ny) Vo Pimfew — Pe mf1 Jie Ec, k) ' 

ein Polardiagramm von —? jeichnet mit dem Realteil als Abszisse und 
Nw 

dem Imaginarteil als Ordinate und mit der einem gewahlten c entsprechen- 

den Kurve E(c,k) zum Schnitt bringt. Aus dem dadurch gewonnenen 7,, 

lassen sich ¢ und 8 finden. 

Nach dieser Methode hat Tollmien das Gleichgewicht der Str6mung 

langs einer ebenen Platte behandelt, auf Grund der bekannten Ansitze - 

von Prandtl und Blasius. Das V-Profil wird durch die stetige Ver- 

bindung eines Geradenstiickes und einer Parabel ersetzt. Die #-Kurven 
: : D =~. : : : 
liefern dann mit dem —— -Diagramm im allgemeinen zwei Durchgangs- 

Nw 

punkte. Zur weiteren Darstellung wird die Grenzschichtdicke gemiB der 

Formel 
mM 

d=/(1 = - 
m 

0 

definiert und die Reynoldssche Zahl R entsprechend durch die GréfBe 
Vind 

Dy. 

gramme wiedergegeben, die die Stérungsparameter ko, 

jay, 

= dargestellt. Wir haben in Abb. 115 die Tollmienschen Dia- 

oo, Sipe Vat 
hangigkeit von der logarithmisch aufgetragenen Reynoldsschen Zahl 
zur Darstellung bringen. Man sieht, daf} zu jedem , das einen ge- 
wissen Mindestwert 420 tiberschreitet, je zwei Stérungsparameter ge- 
héren. Das von den Kurven eingeschlossene Gebiet bezieht sich auf den 
Bereich der labilen Schwingungen. Ebenso wie es fiir die Reynolds- 
sche Zahl eine untere Grenze R=420 gibt, existieren fiir die Stérungs- 
parameter obere Grenzen, nach deren Uberschreiten keine Labilitat 
mehr eintritt, naimlich 

y= 0,425, bd =0,367, HA" _ 0,148, 
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woraus sich fiir das Maximum der Wellenlange der im Verhaltnis zur 

Grenzschichtdicke groBe Wert 2 — oe = oo os 

Gleichgewichtskurven enthalten bei Tietjens nur einen Zweig, d. h. jedes 
R liefert nur einen Wert des Stérungsparameters. Damit scheint der 
Beweis dafiir erbracht zu sein, daB die Vernachlassigung der Kriimmung 
des Geschwindigkeitsprofils fiir die Ermittlung des Stabilitatskriteriums 
nicht zulassig ist. 

Tollmien weist in seiner Arbeit darauf hin, daB die Gegeniiber- 
stellung seiner Ergebnisse mit den Versuchen von Burgers, van der 
Hegge Zijen und Hansen besonders deswegen erschwert wird, weil 
die wirklich auftretenden Stérungen nur unvollkommen bekannt sind und 

ergibt. Die entsprechenden 

—a = 
10 nO ee ee 0 0S 2 I 02 

Abb. 115. Labilititsbereich der Stdrungen in der Nihe einer langs angestromten 

Platte. (Nach Tollmien.) 

weil es nicht geklart ist, wie weit der von diesen Autoren definierte 

Umschlagspunkt mit dem berechneten Labilitatsbeginn der Laminar- 

strémung iibereinstimmt. Bei der Stroémung langs einer Platte existiert 

nach dem Umschlag ein laminares und ein turbulentes Gebiet ; in beiden 

Gebieten nimmt der Gradient der Geschwindigkeit an der Wand strom- 

abwiarts stets ab; nur im Ubergangsgebiet erfolgt eine Zunahme. Daher 

wird der kritische Wert von R aus dem Minimum des Gradienten be- 

rechnet, wihrend die Instabilitat der Laminarstrémung wahrscheinlich 

schon frither (bei kleinerem §%) einsetzt. Es kommt ferner hinzu, dab 

die von den vorgenannten, Autoren benutzte Grenzschichtdicke das 3,18- 

fache des Tollmienschen Wertes besitzt. Der versuchsmaBig ermittelte 

Wert 3000 wiirde daher im Tollmienschen Mae auf 950, der einer 

groBeren Storung entsprechende kleinere Wert 1600 auf etwa 500 zu 

Miiller, Theorie der zihen Fliissigkeiten. 99, 
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reduzieren sein. Da im Falle des Versuches bei dem bezeichneten Um- 

schlagspunkt bereits ein ziemlich erhebliches Anwachsen der kleinen 

Storungen erfolgt ist, wihrend bei dem berechneten Wert R= 420 

gerade noch eine einzige gediimpfte Grundschwingung vorhanden ist, 

so kann die Ubereinstimmung mit den Experimenten als giinstig be- 

zeichnet werden. 

§ 91. Uberblick iiber weitere Lésungsversuche. 

Endliche Stérungen. Alle bisher besprochenen Ansatze zur Er- 

fassung des Turbulenzproblems haben es mit Zusatzbewegungen zu tun, 

die relativ zur Hauptstroémung als klein betrachtet werden. Daf zur 

Entscheidung einer Frage wie der nach der Entstehung der turbulen- 

ten Labilitat das Verhalten gegeniiber kleinen St6rungen noch nicht 

ausreicht, zeigt ein einfaches Beispiel aus der gewobnlichen Mechanik. 

Wenn eine Kugel mit exzentrisch gelegenem Schwerpunkt S auf einer 

geroBen Kugel liegt, so wird sie unter bestimmten Bedingungen gegentiber 

kleinen St6rungen in einer stabilen Gleichgewichtslage sich befinden. 

Wenn aber die Auslenkung ein gewisses angebbares Maf tiberschreitet, 

wird sie nicht mehr riickgangig gemacht werden, sondern sich ver- 

gréBern; die Kugel wird also nicht mehr in die anfingliche Lage zuriick- 

kehren, sondern auf der groBen Kugel herunterrollen. So ware es 

nicht undenkbar, dai die Stérungsbewegung in einer Fliissigkeit unter 

gewissen Bedingungen eine solche GréBe erreichen kann, daB die Sta- 

bilitat gestort wird, die bei kleinen Stérungen sich selbst erhalten wiirde. 

Auch wenn die Laminarbewegung bei idealen Verhaltnissen, d.h. gegen- 

tiber unendlich kleinen Schwingungen, immer stabil ist, so kénnten doch 

von der Wandung, die ja niemals vollkommen glatt sein kann, son- 

dern immer einen gewissen Rauhigkeitsgrad besitzt, Stérungen ausgehen, 

die um so leichteres Spiel haben, je kleiner die Stabilitat, also je 

gréBer die Reynoldssche Zahl ist. Die Versuche von V. W. Ekman?) 
und L. Schiller?) haben ferner bewiesen, daB man durch vorsich- 
tiges Experimentieren, d. h. durch méglichste Kleinhaltung der Sté- 
rungen, den kritischen Ubergang hinausschieben kann. Es scheint also 
wirklich so, daB die GroBe der Stérungen irgendwie von Bedeutung 
ist. Ahnliche Erwigungen hatten schon Lord Kelvin, 0. Reynolds 
und Lord Rayleigh angestellt®), und neuerdings hat vor allem 

1) V. W. Ekman, Archiv f. Mat., Astr. och Fysik, Bd. 6, No. 12 (1910). 
*) L. Schiller, Z. f. Physik IIT (1920), S. 412. 
*) Vgl. die S. 314 zitierten Arbeiten und den Bericht von F. Noether, 

4. a. M. M. Bd. 1 (1921), S. 133t 
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F. Noether') eine prazise mathematische Problemstellung daraus ab- 
geleitet. Er betrachtet eine gleichfalls laminare anfangliche Geschwin- 
digkeitsverteilung Vy (y), die aber von der im Couetteschen Fall linearen 
Verteilung der stationiiren Laminarbewegung endlich verschieden ist. 
Der daraus folgende Strémungszustand kann eine nicht stationiire Be- 
wegung sein, durch welche die Verteilung der Geschwindigkeiten sich 
asymptotisch der stationiiren nihert. Die Frage nach der Stabilitit 
dieser nicht-stationiren Laminarbewegung lat sich analog dem An- 

satz fiir klee Schwingungen in Angriff nehmen. Wenn aber auch die 

Moglichkeit der Labilitat fiir einen besonderen Fall der kontinuier- 

lichen Anfangsverteilung der Geschwindigkeit nachgewiesen ist, so 

scheinen doch die bisherigen Resultate noch keinen wesentlichen Auf- 

schluB tiber die Vorginge beim Ubergang in den turbulenten Zustand 

zu geben. 

WandeinfluB. Es liegt ferner nahe, die kleinen Schwingungsbewe- 

gungen der Turbulenz in Verbindung zu bringen mit der Beschaffenheit 

der Wand, d. h. entweder mit der Rauhigkeit, die auf die vorbeistr6mende 

Fliissigkeit Impulse austibt, oder mit Wanderschiitterungen, die sich 

vermittels der Reibung der Fliissigkeit mitteilen. v. Mises?) betrachtet 

die turbulente Bewegung als eine unfreie Schwingung, die dauernd durch 

die Unebenheiten der Wand angeregt wird, nach Art der erzwungenen 

Schwingungen eines elastischen Systems. Oseen hat dem WandeinfluB 

dadurch Rechnung getragen, da er die Storungsgleichungen um ein 

Glied erweitert, das sich auf eine nicht von einem Potential ableitbare 

auBere Kraft bezieht. Beim Ubergang zu verschwindender Reibung ergibt 

sich Labilitat. Wahrend diese Ansitze keinen besonderen kritischen Wert 

der Kennzahl ergeben, hat Hopf?) jedenfalls fiir den extremen Fall, 

daB die Wand der Stérung einen verschwindenden Widerstand entgegen- 

setzt, d.h. fiir den Fall der freien Oberfliche, einen solchen Wert er- 

mitteln kénnen, der naturgemaf kleiner ausfillt, als der der beobach- 

teten Ubergangswerte der Reynoldsschen Zah!. Wenn die Fliissigkeit 

reibungslos ist, so fiihrt die der freien Oberfliche entsprechende Grenz- 

bedingung p—0 zu einer Instabilitat, wie eine einfache Rechnung ergibt. 

Wir haben fiir diesen Fall als Lésung der Storungsgleichung 

df 7 — Kf =0 

1) Fr. Noether, Sitzungsberichte der bayr. Akad. d. Wiss. 1913, 8. 309. 

2) R. v. Mises, Jahresber. d. deutschen Math. Ver. 21 (1912), S. 241; ferner 

Jas MM, Bd. (1921), S, 13. 
®) L. Hopf, Ann. d. Physik. Bd. 59, (1919), S. 538. 
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die Funktion, 
f=AGinkn + BCojky. 

Sei ferner der Druck in der Form angesetzt 

p= beilPt—k5), 

so fiihrt die Benutzung der Grenzbedingungen 

p=0 fir n=0 und 7=1 

zu dem Wert 

gap ay +p—kOolk. 

Ist k groB, also die Wellenlinge der Stérung klein, so ist f reell; die 

Storung verhilt sich also indifferent. Wenn aber k < 2,4, so ist 6 komplex. 

Wir kénnen daher sagen, da die Hauptstromung gegen jede Storung 

instabil ist, die zu emem k < 2,4 gehért. Wenn man die Reibung beriick- 

sichtigt, so ergibt sich, da die Instabilitat bis zu einer unteren Grenze 

der Reynoldsschen Zahl (R=11) bestehen bleibt. 

Die sehr schwierige Diskussion zeigt, daB bei klemen Reynoldsschen 

Zahlen das System der Schwingungen denselben Charakter hat wie bei 

der ruhenden Fliissigkeit, und daB bei groBen Kennzahlen das ganze 

Innere der Str6mung von einer Potentialschwingung beherrscht wird, und 

nur in engen Grenzschichten an den Wanden, die mit wachsenden Rey- 

noldsschen Zahlen immer kleiner werden, die Reibung so zur Geltung 

kommt, daB die Grenzbedingungen richtig erfiillt sind. Dabei ist das 

Ergebnis bemerkenswert, dais die instabilisierende Stérung unter Um- 

standen in einer zihen Fliissigkeit starker anwachst als in einer rei- 

bungslosen. Niemals kann aber eine Stérung eine reibungsbehaftete Be- 

wegung instabil machen, die nicht auch bei reibungsloser Fliissigkeit 

dazu faihig ist. 

§ 92. Energetische Ansitze zum Turbulenzproblem. 

1. O. Reynolds?) hat zum ersten Male das Problem der Turbulenz 
vom energetischen Standpunkt aus betrachtet, d.h. die Frage gestellt, 
unter welcher Bedingung die Energie der Stérungsbewegung, die der vor- 
gegebenen laminaren Strémung tiberlagert wird, mit der Zeit anwachst 
oder abnimmt. Ohne zunichst zu entscheiden, ob diese Alternative 
gleichbedeutend ist mit der Frage der Stabilitat, wollen wir in még- 

') O. Reynolds, On the dynamical theory of incompressible viscous fluids 
and the determination of the criterion. London, Philos. Transact. (A) 186 (1895), 
S. 123. 
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lichster Allgemeinheit den Ausdruck fiir die zeitliche Anderung der 
Stérungsenergie im Zusammenhang mit den fritheren Ausfiihrungen 
tuber die dissipative Energie aufstellen!). Wir kniipfen dabei an die 
allgemeine Bewegungsgleichung an, der wir wegen der Kontinuitiats- 
beziehung die Form geben kénnen 

(1) oa, +192) =p tuto. 

Wenn sich die Geschwindigkeit » zusammensetzt aus der Laminar- 

bewegung B und der als klein vorausgesetzten Stérungsbewegung v’, 
so haben wir 

v=BS+v, p=P+>p. 

Setzen wir diese Werte in die Gleichung (1) ein und bedenken, daB B 

fiir sich der Gleichung (1) geniigt, so ergibt sich bei Vernachlassigung 

der Glieder, die in bezug auf vp’ von 2. Ordnung sind, 

ogy FBP 0) + ev B= Fp Hud 

oder 

o(Ge +P B)=—Fy +n’. 

Bilden wir das innere Produkt jeder Seite dieser Gleichung mit vp’, so 

erhalten wir wegen 

f-»' x roto’ = —v’-rotrotv +(rotv’)?, 

Ay =—rotroty’ 
die Beziehung 

,d : Aue? Pa Ana , 

(2) ov’ <= @Fn—uF, —F-p'v + uF -v' xroty’, 

wo F,, und F,, die Bedeutung haben (vgl. § 6, S. 20) 

“ 7.0 Kel OV; ee 
Sen ees ai ave + Fut) bos = Bip DB) 

(2a) Ov, odv'.\? : |r = (Bee) 4. = rote’ = ae 
Wenn wir mit dem Raumelement dt multiplizieren und tiber den 

Flissigkeitsraum integrieren, ferner die letzten beiden Integrale nach dem 

GauBschen Integralsatz in Flachenintegrale langs der festen Grenzen 

verwandeln, so bleibt wegen der Haftbedingung 

(3) (B= 0f[Fnde—u[Frde. 

1) H. A. Lorentz, Abhandlungen, Bd. 1, Leipzig 1907, S. 43—71. 
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F_ ist die bereits von frither her bekannte Dissipationsfunktion; das 

Dreprecteace Integral stellt also die in der Zeiteinheit durch Reibung 

absorbierte Energie dar. Das erste Integral dagegen ist die Zunahme der 

Stérungswucht in der Zeiteinheit. Es ergibt sich also als Bedingung fiir 

die Abnahme der Stérungsbewegung 

(4) uf Prd oe g | Fm We 

2. Wenn wir im besonderen als Laminarstrémung eine Parallel- 

strémung in der w-Richtung haben zwischen zwei ebenen Wanden, so ist 

V,=V,=0 und V,=V nur von y abhangig, und wir erhalten daher 

OV , Ud 
F, = — Y,.VU,,——* 

m 2x Y Oy 

Die Bedingung (4) geht dann iiber in 

; ING 8 irae 
(5) uf | (rot v’)?dady > =O) ae Uy vydx dy. 

Ist der Abstand der beiden Wande 2h, und bewegen sich beide Wande 
: es) 4 

mit den Geschwindigkeiten U) und —U , so wird + = 4 - Fthrt man 

ferner dimensionslose GréBen ein durch E—— >= a so hat man 

‘(dvs Ovn\2 5 UBT ttle eae (5a) [Ge -—FePasan> — [frreagay. 

Wenn man nun besondere Stérungsbewegungen annimmt, so mub 

es mOglich sein, einen Mindestwert der Reynoldsschen Zahl zu bestim- 

men, bei welchem der Gewinn und der Verlust an Energie einander gleich 

werden. Offenbar kommen nur solche turbulenten Bewegungen in Be- 

tracht, fiir welche das erste Integral |F at positiv ist, die Storungs- 

komponenten also entgegengesetzte Vorzeichen haben. Lorentz hat eine 

Anniherung an diesen Fall dadurch gewonnen, daf er die Flissigkeitsteil- 
chen in elliptischen Bahnen sich bewegen laBt, deren groBe Achse eine 

geeignete Richtung hat. Die Gleichung 

= =0 | Fnd (ei | Fra t=0 

fihrt dann zu einem Ausdruck fiir die Grenzgeschwindigkeit U,, als 
Funktion von drei Parametern, die die GréBe, die Gestalt und die Lage 
des Wirbels charakterisieren. Indem Lorentz dann einen moglichst 
kleinen Wert von U, berechnet, d.h. den elliptischen Wirbel so wablt, 
dafS méglichst ungiinstige Verhiltnisse fiir die Stabilitat entstehen, ge- 
langt er zu einem Wert der entsprechenden Reynoldsschen Zahl 

Uyh 2U,-2h 
oH 12, baw, ota oee p y 
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der bedeutend kleiner ausfallt, als der versuchsmaBig gefundene Wert 

der Kennziffer, die die Grenze fiir die laminare Strémung angibt. Wenn 
man das Energiekriterium noch strenger auswertet, also auch die anderen 
Méglichkeiten der Wirbelbewegung beriicksichtigt, erhalt man noch 

kleinere Werte fiir R,. Hamel?) hat insbesondere das Turbulenzproblem 

auf eine Aufgabe der Variationsrechnung zuriickgefiihrt. Fiihrt man die 

Stromfunktion der Stérungsbewegung ein 

Cea Ow dv, Ov 
Ue Da. Uy ae: OE Oy, = Aw, 

so laBt sich die Aufgabe dahin formulieren, daB das Minimum des Integrals 

B={|(4w)dsdy 

unter der Nebenbedingung 

(OWED 

Hoe, 4840=! 

mit Beriicksichtigung der bekannten Randbedingungen gesucht werden 

soll. Dieses Variationsproblem fiihrt, wie Hamel darlegt, in dem vor- 

liegenden Falle auf die Differentialgleichung 

a : Ow a 

(6) AAW +isy =0 

und des weiteren auf die Berechnung des ersten Eigenwertes einer linearen 

Integralgleichung. Die von Hamel angekiindigte numerische Weiter- 

verfoloung der Rechnung ist, soviel ich wei, bisher noch nicht erschienen. 

§ 93. Energiegleichung fiir die ausgebildete Turbulenz. 

1. Wir haben zunachst eine gegebene Laminarbewegung mit einer 

als klein angenommenen Stérung zusammengesetzt und uns gefragt, 

welche Bedingung erforderlich ist, damit die St6rungsenergie eine Ver- 

groBerung mit der Zeit erfahrt. Bei der zur vollstandigen Ausbildung 

gekommenen Turbulenz kénnen wir die gesamte Mischbewegung aut- 

teilen in die im wesentlichen, gleichbleibende mittlere Stromung, diez. B. 

in einer Rohrleitung die meBbare Geschwindigkeitsverteilung und die 

hindurchflieBende Menge bestimmt und von der regelmafigen laminaren 

Bewegung wohl zu unterscheiden ist, und die eigentlich turbulente, wir- 

belnde Bewegung, die relativ zur Hauptbewegung von endlicher GréBen- 

ordnung sein kann. 

1) G. Hamel, Zum Turbulenzproblem, Géttinger Nachrichten, 1911, S. 261 

bis 270. 
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Wenn wir den Mittelwert einer Zustandsfunktion durch einen hori- 

zontalen Strich bezeichnen und als Zeitintegral 

t+4r 

ip = = | pat 

t—4¢t 

definieren, so laBt sich jetzt der Geschwindigkeitsvektor p in der Form 

darstellen 

p=v+0, 

wo sich p auf die Mittelbewegung und v’ auf die turbulente Zusatz- 

bewegung bezieht. Dann ergibt sich ohne weiteres 

oC 

ferner 

v2 = (vz) + vz, USW., 

avy Vy = Vx Vy ar Ui, Vy» usw. 

Die Gleichung (1), § 92 erhalt dann die Form 

(1) o(gp + Fv) = —Pp+uto—ol “p'D’. 

Sie unterscheidet sich also von der friiheren Gleichung durch das 

Hinzutreten des letzten Ausdruckes. Da nach § 4 

es pote 9 ail ae 
also auch 

ON (Ot Ores 
ud vz; = eee pe 
ee ae Oy Tr Oz 

ist, so erhalt man die Gleichung fiir die mittlere Bewegung aus der 

allgemeinen Differentialgleichung, wenn man die SpannungsgréBen durch 

folgende Werte ersetzt 

Ova ek peel 12 
| Oy = all aa g 

(2) Ve a 5 
yz = fl de | Oy — OVyVz, USW. 

Es treten daher bei der turbulenten Bewegung zusitzliche Spannungen 

auf, die durch den Impulstransport bedingt sind, in Ahnlicher Weise, wie 

die Bewegung der Molekiile die innere Reibung eines Gases verursacht. 

Mit Benutzung der Kontinuitatsgleichung kénnen wir die Bewegungs- 
gleichung in derselben Weise wie friiher in folgender Vektorform dar- 
stellen 

dv’ Ln eee LRT Pa 
(1a) Q Sipicis ee v+V-ynv —F-v'v =—Vyp+udv, 
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aus der z. B. fiir die x-Richtung sich ergibt 

Avy , OV, , OVx , OVx Ov? Ovzx dy On Ves 
Tima omen Woy ano, ao sday Oy Os 

Ove? Overy Ove vs Op’ ; 
Ox dy 02 |=-Bt um. 

Daraus leiten wir dann ahnlich wie im vorigen Paragraphen die Ande- 
rungsgeschwindigkeit fiir die Energie der Stérungsbewegung pro Massen- 

einheit ab und durch Integration iiber das gesamte Gebiet die Gleichung 

d 1 fa a 

(3) de = 0 [Fmd — uf Pea, 

die formal mit dem fritheren Ausdruck (3), § 92 iibereinstimmt. Wir 

haben jetzt zu setzen 

— Fm =v'v'--D(v); F, =e VOU Dale =—i4 wy 8 

Mit Riicksicht darauf, daB py’ an den Grenzen verschwindet, kann man 

durch einfache Umformung des zweiten Integrals zeigen, daB F,. auch 

ersetzt werden kann durch den Ausdruck 

D(v’)- - D(v’). 

2. Die vorstehenden Gleichungen kénnen wir nun auf einige besondere 

Falle anwenden. Im Falle der Rohrstr6mung?!) kann die Bewegungsglei- 

chung auch sofort aus der Bemerkung abgeleitet werden, da die Schub- 

spannung, die der Strémung entgegenwirkt, durch das Impulstransport- 

glied der turbulenten Bewegung um 0v,0, verringert wird, wenn wir 

jetzt die Stérungskomponenten in der axialen und radialen Richtung 

mit v, und v, bezeichnen. Fiir das Gleichgewicht eines mit der Wand 

koaxialen Fliissigkeitszylinders vom Radius r und der Lange / ergibt 

sich die Beziehung 

(4) rer? (pr — p2) = — 2Wr1(T. — Ovz%)» 

WO To= UL oe zu setzen ist. Setzt man ov,v,.=J, so kommt mit ae ~4 

dv 
(4a) Cie TT gp 

J ist eine noch unbekannte Funktion von r, die jedenfalls an der 

Rohrwand verschwindet. Man hat also an der Grenze 

dv a ; dv 
(5) . gto = — 2u( sr) 3 IE 1, (Pi — P2) = —2irolu Cae 

1) Vgl. H. A. Lorentz, a.a. O. 8. 65—71. 
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woraus sich ergibt, daB die erforderliche Druckkraft ebenso wie im 

Poiseuilleschen Fall der Reibungskraft an der Wand gleich sein mub. 

Durch Integration von (4a) ergibt sich 

(6) Fi : | Jar 

und hieraus weiter fiir die Durchflu&menge 

on) 
rat es (7) a fear. 

0 

Man sieht also jedenfalls, daB in Ubereinstimmung mit der Erfahrung 

infolge der turbulenten Bewegung die bei einem Druckgefalle g durch 

das Rohr hindurchflieBende Fliissigkeitsmenge kleiner wird, als das 

Poiseuillesche Gesetz angibt. Umgekehrt wird die fiir ein bestimmtes Q 

erforderliche Druckdifferenz und wegen (5) auch das Geschwindigkeits- 

gefalle an der Wand vergréBert, wihrend dieses Gefalle in der Nahe der 

Achse natiirlich entsprechend kleiner wird als im Poiseuilleschen Fall. 

Die turbulente Bewegung wbt also, was von vornherein zu erwarten war, 

auf die Geschwindigkeitsverteilung eine ausgleichende Wirkung aus. Wie 

man ausgehend von empirischen Feststellungen (z. B. der Blasiusschen 

und verwandten Formeln fiir den Druckabfall) und Dimensionsbetrach- 

tungen zu dem Karmanschen und andern Potenzgesetzen fiir die 

Geschwindigkeitsverteilung gelangt, ist frither ausgefiihrt worden. 

Fiir die Energiebeziehung hat man 

(8) Pn = Fm = — Vv, So = = : = 

zu setzen und erhalt dann wegen (4a) nach Lorentz 

Vo 10 

dv 
(9) A=Q(pi— po) = GlQ = Zul | (Ge) rar — 2001 | J ae rdr= A’ +A”. 

0 ) 

Wenn man annimmt, dafi die turbulente Wirbelenergie konstant ist, 
so folet 

P tO eats 
(10) 7 | Frdt =A—20ul | (ie) rar. 

0 

Die Arbeit, die erforderlich ist, um das Volumen Q durch das Rohr 
hindurchzutreiben, setzt sich aus zwei Teilen zusammen, die auf die 
Uberwindung des Widerstandes und die Wirbelenergie verwendet werden. 
Setzt man 

v=utre, 
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wo %i=c(r¢—r?) der Poiseuilleschen Strémung entspricht, so wird der 
erste Bestandteil der Arbeit 

0 0 

dv, 
0 

(ll) A =2rul | (um) rar + 4ul | ges Os aes +2 ul | (ae) rar. 
dr di dr 

To rT 19 

Fir das Integral des zweiten Ausdruckes erhalt man aber 

nd 0 Y 
20/ 2dr = — 2C[ver"] + 40 | verdr=0, 

a) cn) 

wenn die DurchfluBmenge fiir beide Strémungsarten dieselbe sein soll. Es 

ergibt sich, daB der erste Bestandteil der Arbeit A’ bereits gréBer aus- 

fallt, als die Arbeit der Poiseuillestrémung, die dieselbe Menge @Q 

befordert. 

3. Fir den zweiten Fall, den der Str6mung zwischen ebenen Wanden 

(y = +h), gewinnen wir wie oben das Grenzkriterium aus der Gleichung 

0 | Fndt = u| Prd v 

in folgender Form 
+h +h 

dy a> ID 
(12) | dy ov, vy, dy +1 | (ot v)?dy=0 

—h —h 

und fiir die Tangentialspannung zwischen den Fliissigkeitsschichten den 

Ausdruck 

Daraus entsteht dann durch Elimination der mittleren Hauptge- 

schwindigkeit 

13) | le2(w04)? + rooney + 442} dy =0 

und die Spannung 
+h 

| {e?(on04))? + 4u2w'| dy 

(14) f= — — 

[ov,v,dy 
—h 

wiihrend die Geschwindigkeit 2U , mit der sich die beiden Wande gegen- 

einander bewegen, aus der Gleichung sich ergibt 

Ae Hrs 1 th 

v v EL (15) 20y={qedy=2=h +5 [ecosdy. 
=f) S10 
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Das Widerstandsgesetz ist dann bestimmt durch die Integrale 

+h +h +h ae = es 
[ vnvydy, [ (weryPdy, [wdy. 

ay, =p =) 

Burgers?) legt zur Ermittlung dieser Integrale die von Lorentz 

eingefiihrten elliptischen Wirbel zugrunde und stellt sich die Frage, bei 

welcher GréBe, Exzentrizitiit und Schieflage der Wirbel der Widerstand 

bei gegebenem U, ein Maximum erreicht. Die Untersuchung fihrt auf 

zwei Gesetze 

w=cUs, t=c-Us; 

von denen das erste dem Fall gleicher, das zweite dem Fall ungleicher 

Wirbel entspricht, deren GréBe eine gewisse untere Schranke tiber- 

+ 

197 Gurgers _| | | 

10% 708 10° 707 708 

Abb. 116. Turbulenter Widerstand einer Strémung zwischen ebenen Wainden. 

(Nach Blasius, Burgers, Tietjens-v. Karman.) 

schreitet. Die entsprechenden Widerstandskrafte erweisen sich im ersten 

Falle als zu klein, im zweiten Falle als viel zu groB, wie Vergleich mit 

den in Abb. 116 dargestellten Versuchswerten von Blasius zeigt. 
v. Karman?) fiihrt, tiber die bisherigen Ansitze hinausgehend, in An- 

) J. M. Burgers, Verslagen der Kon. Akad. v. Wetensch. Amsterdam, Bd. 32 
(1923), 8. 574; Vortrage aus dem Gebiete der Hydro- und Aerodynamik, Innsbruck 
1922, 8S. 143. 

*) Th. v. Karman, Uber die Stabilitat der Laminarbewegung und die Theorie 
der Turbulenz, Proceed. of the I. Intern. Congr. for appl. Mechanics Delft 1924, 
Delft 1925, 8. 105f. 
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lehnung an die kinetische Theorie der Gase eine statistische Berechnung 
des turbulenten Strémungswiderstandes durch, indem er den Begriff der 
Wahrscheinlichkeit der Schwankungsverteilung benutzt. Fiihrt man, bei 
Beschrankung auf einen speziellen Fall, fiir die Schwankungsbewegung 
die Stromfunktion 

w= Acos(ax + Py), 
also die Komponenten 

(16) V,=APsin(ex+ Py), v,=—Aasin(ar+ fy), 

ein, so ergeben sich folgende fiir die Spannungen maBgebende Mittelwerte 

| m= a 
(17) ) a A2 

| lrot py’ |? == oad reaps): 

und daraus fiir die auf die Masseneinheit bezogene Energie oder das halbe 

Quadrat der mittleren Schwankungsgeschwindigkeit 

210 |? =247(a? + 6). 
Mit Einfiihrung von v’ hat man daher 

v2 «8 

2 2 pe? 
jrot v |? = S (Oe p>). (17a) Up Vy = — 

Wenn wir nun einen festen Mittelwert v’ zugrunde legen, so kommt 

es zunichst darauf an, die Bestimmung der GréBen a, f nach den Me- 

thoden der Wahrscheinlichkeitsrechnung vorzunehmen. Bezeichnet man 

nach v. Karman die Haufigkeit eines Zustandes zwischen a und a-+da, 

B und B+df mit f(a, P), so muf die logarithmische Wahrscheinlichkeit 

S= a log fdadp 
a 

unter Beriicksichtigung der RRA ee zu einem Maximum 

gemacht werden. Diese Bedingung bringt zum Ausdruck, dal} der weitaus 

eroBte Teil der durch die Bewegung der Wande geleisteten Arbeitsmenge 

im mittleren Bereich des Kanals von der Nebenbewegung verzehrt wird. 

Es ergibt sich dann aus 

(18) —ev,,v,-U, =ulrotv’ 2h 

bei Einfiihrung der Werte (17) die Bedingung 

foe) co ; h 

(19) a [tee (ap Nos zal +e +7,(@ + 6%| dadp— 0 

Da es uns hier nur auf die Darlegung der Methode ankommt, wollen 

wir die weitere Rechnung nicht aufschreiben und nur die Resultate 
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angeben. v. Karman erhalt mit a?+p?=k?, “— tg @ fiir die wahr- 
Ae ; B 

scheinlichste Verteilungsfunktion 

— 3,22 (sin Jcos Ft + one) 

(20) f(a, ) =c-e fe 

und daraus fiir den Mittelwert der 6rtlichen Frequenz in der #-Richtung 

oder die ,,Wellenlinge‘* der Stérung 

= U oO 7 ~ >) — S206. a Pip ees OM ; (21) c 0,155 Pr lL ——— 2,5 2,0 U, 

es : 5 Bent! - 
Um iiber die mittlere Schwankungsenergie — v” eine Aussage zu 

machen, miissen nimlich die Vorginge an der Wand beriicksichtigt wer- 

den. Der Einfachheit wegen nimmt v. Karman an, dab die Geschwin- 

digkeit in der Wandnithe linear vom Wert 0 auf den Wert U, anwachst, 

d.h. ein geknicktes Geschwindigkeitsprofil, wie es in der Tietjensschen 

Arbeit benutzt wurde. Dann kann man setzen 

Uy eT 
T= A) eat kel O(Va Vy )y< h—0o- 

Aus der Prandtl-Tietjensschen Stérungsrechnung ergibt sich eine 
U,d 

y 
und dem Beziehung zwischen der Kennzahl der Grenzschicht & = 

Verhaltnis der Wellenlinge 2 der Stérung zur Grenzschichtdicke i 

-— B mit dem Ansatz 
; : uh ; . J, a? 

Verbindet man die v. Karmansche Beziehung i 
vv 

S=Arn"”, 

wo A eine Konstante ist, so ergeben sich fiir 2 und 6 die beiden Glei- 

chungen 
U, gurl , 

soo ae 
und daraus 

_ 22 uy Bn+4 
O=6-Uy 2™42, Gat > e-,2" 2) 

€ 

Wir haben dann im besonderen 

fur n=O; Fae csUy”, 

spay ead fe Olgas 
o 3 

fir 2 cO: F=Cc:-Uo?. 

Die Grenzwerte stimmen also wieder mit den Burgersschen Werten 
tiberein; der mittlere entspricht dem Blasiusschen Wert. 

Setzt man weiter 

gee Un us 
be te UG a? 
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so ergibt sich fiir den Reibungskoeffizienten y 

a Qy Ss 2 

ae § 
Andererseits hat man 

S22 —R-B, = 

Man erhalt daher den Widerstandskoeffizienten in Abhingigkeit von der 

Kennzahl, sobald die Beziehung zwischen € und 7 bekannt ist. Die bei- 

gegebene, der v. Karmanschen Arbeit entnommene Abb. 116 gibt neben 

den Burgersschen Widerstandszahlen und dem nach der Blasiusschen 

Formel berechneten Wert y die Resultate der v. Karmanschen Rech- 

nung wieder, die auf Grund der Tietjensschen Arbeit nach den an- 

gegebenen Formeln durchgefiihrt wurde. Die Kreuze entsprechen dabei 

der Annahme, daf die mittlere Wellenlinge im turbulenten Bereich gleich 

ist der Wellenlinge der Grenzschichtstrémung, die weder angefacht noch 

gedampft wird, wahrend fiir die mit Kreisen bezeichneten Werte die 

mittlere Wellenlange mit dem Grenzschichtwirbel tibereinstimmt. Bei 

den verhaltnismaBig groben Voraussetzungen und der Unkenntnis der 

Geschwindigkeitsverteilung der mittleren Bewegung ist eine vollstiandige 

Ubereinstimmung zwischen Theorie und Erfahrung nicht zu erwarten. 

Uber einen weiteren Versuch v. Karmans, der mit bedeutend weniger 

Annahmen auskommt und einen besseren Einklang mit den Versuchen 

erzielt, soll im letzten Abschnitt berichtet werden. 

§ 94. Erweiterung der hydrodynamischen Differentialgleichung 
fiir die Turbulenz. 

Die Erscheinungen der Turbulenz unterscheiden sich so wesentlich 

von der laminaren Bewegung, da man wohl daran zweifeln kann, 

ob die Voraussetzungen, die der Ableitung der Stokes-Navierschen 

Gleichungen der Hydrodynamik zugrunde legen — und sie beziehen 

sich im wesentlichen auf den laminaren Fall, — ohne weiteres Giil- 

tigkeit behalten werden. Es liegt jedenfalls nahe, die Grundgleichun- 

gen so zu erweitern, da die besonderen Verhaltnisse des turbulenten 

Falles von vornherein Beriicksichtigung finden. Nach den bemerkens- 

werten Versuchen, die u.a. von J. Boussinesq?) und O. Reynolds ge- 

macht worden sind, hat neuerdings Mohorovicic?) einen Ansatz ge- 

1) J. Boussinesq, Théorie de l’écoulement tourbillonant et tumultueux des 

liquides, Paris 1897. 

*) Mohoroviéié, Hydrodynamische Grundgleichungen fiir die turbulente 

Bewegung, Z. f. techn. Physik, 6. Jahrg. (1925), 8. 683—74. 
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geben, der darauf hinauslauft, das Gleichungssystem in zwei Teilsysteme 

zu zerlegen, von denen das erste im wesentlichen die mittlere Grund- 

bewegung p, das zweite die iiberlagerte Schwankungsbewegung v’ regelt. 

Wenn man : 
D=D+D 

setzt und annimmt, da ein Teil des Geschwindigkeits- bzw. Druck- 

gefalles die mittlere Strémung und ein anderer Teil die Turbulenz ver- 

ursacht, ferner statt der gewohnlichen die ,,virtuelle innere Reibung y’ 

bzw. »’ einfiihrt und die eingepragte Kraft mit £, die innere Kraft mit f 

bezeichnet, so zerfallen die Bewegungsgleichungen in zwei Systeme, die 

vektoriell die Form annehmen 

(1) o& t—2eP p +940; V -»y=0, 
a t 

5 Aewe fF Gy Sai) off i) Si’ = e'F pty’ Avo; Fp =0,; 
N 

(2) 

wo e und e’ zwei Vektoren sind, fiir deren Komponenten (als Bruchteile 

des Gefilles) die Beziehungen gelten 

(3) Ceterp=1, eytey=l1, et+e=1. 

Es handelt sich dann darum, das erste System (1) zu lésen und die ge- 

fundenen Werte der Geschwindigkeit in das System (2) einzusetzen. 

Mohorovitié priift den neuen Ansatz zunachst fiir den Fall der 

turbulenten Stromung im Kreisrohr. Nehmen wir an, daB die mittlere 

Geschwindigkeit stationir und parallel sei der mit der Rohrachse zu- 

sammenfallenden a-Achse, so kann v,=v als Funktion des Abstandes r 

von der Achse angesehen werden, und es wird 

SS dv dv 
Vv, =v,= 0, OE == (i) 

Ferner wollen wir bei horizontaler Lage der Achse k=0 setzen. Dann 
entsteht aus (1) die Gleichung 

1 d0/ ev a! Op 

(4) r ar(” ~ a! On 

Setzt man nun mit Mohorovitié 

(5) e=Albbtar”); v=Kod(r)+B, 

wo A, b und a Konstanten bzw. Funktionen des Rohrhalbmessers, ebenso 
Ky und B Konstanten sind, und 9 eine Funktion von 7 ist, so entsteht 
aus (4) 

d?9 1 dd K 6 BORE De ceak (6) an +> dp KE, 40 tar"), 
S Op 

wobei K = - 7 pe ieee ist. 
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Um (6) zu lésen, machen wir weiter den Ansatz 

(7) F=xrAar®+2+ Or2, 

Dann erhalt man 

_- 38 Petes ks, 

Wenn m eine reelle Zahl bedeutet, so wird mit K = m2zKo 

n=m—2 oder n=—m—2. 

SchlieBt man die negativen Potenzen aus, so erhalt man 

- “KA K p= am 4 SO LB (m=2) m2 

und bei Bericksichtigung des Haftens an der Wand (r = 7) 

= Ado 

(9) eae ee ae E 

Die DurchfluBmenge wird daher 

i) 
Gi Ee ela — r?) (m = 2). 

Adp| m an ba 
ao eae! pm + 2 _ pk (10) Q= ase larg erat + ort | 

Bilden wir daraus die mittlere Ge- 

schwindigkeit, so erhalten wir fiir den 

Quotienten = den Wert 
m 

R=) + Lop - 98) 
ll == = 
( ) Vin m a om b ee Poe 

m+e2m? 9 ~ 3 ° 

Man sieht nun, da der Fall der Poi- 

seuillestrémung den Werten 

At 6 —— ea — () 

entspricht. Ferner erhalt man z. B. fiir 

b=0 und A-a=—a, die Relationen 

| Dv m+2 yin 
Sin mee a mn): Abb. 117. Verteilungsgesetz der 

Geschwindigkeiten im Kreisrohr 

bei verschiedenen Turbulenz- 
enthaltenen Falle beziehen sich auf tur-  graden. (Nach Mohorovitié.) 

Alle in diesen letzteren Gleichungen 

bulente Stroémungen, und zwar wird die 

Verteilung der Geschwindigkeit iiber den Querschnitt um so gleich- 

maBiger, je gréBer der Exponent m wird (vgl. Abb. 117). Die Zahl m, 

die Mohorovitié als den ,,Grad der Turbulenz‘‘ bezeichnet, muB 

Miiller, Theorie der zihen Fliissigkeiten. 23 
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natiirlich als Funktion der Reynoldsschen Zahl aufgefaBt werden. 

Leider hat es Mohorovitié versiumt, in seiner Arbeit nahere Angaben 

iiber diese Abhaingigkeit zu machen. 

Die allgemeine Lésung (10) enthalt noch vier verfiigbare Konstanten 4, 

a, b, m, und es ist daher méglich, die Theorie den Versuchen gut anzu- 

passen. Wir wollen hier das von Mohorovicié durchgerechnete Beispiel 

fiir eine ausgesprochen turbulente Strémung vorfiihren, um die prak- 

tische Bedeutung der Theorie zu zeigen. Setzt man r=0 und b=ga, 

so erhalt man mit U):Um—= Ao 

eG i 

, tr" lm +2 m 
2 9 mL = $45) 
und daher fiir die Geschwindigkeitsverteilung den fiir die praktische 

Rechnung geeigneten Ausdruck 

m ; 1 a l 
AA ei ia m +2 oa r\2\) [ m m +20 — 

ee ee it (.) )+ (aa (2 euled ) |e ol = $2, 

Benutzt man nun den von Bazin fiir ein sorgfaltig geglattetes Zement- 

rohr von ro>=40 cm gefundenen Wert Ap= 1,167 und den in unmittelbarer 

Nahe der Rohrwand (r= 39,96 em) giiltigen Wert A=0,741, so ergibt 

sich fiir m ein Wert zwischen 2000 und 3000. Die Ubereinstimmung 

zwischen den mit zwei Werten m berechneten weiteren 2-Werten mit 

den Messungen fiallt, wie die beigegebene Tabelle zeigt, auBerordentlich 

giinstig aus. Es scheinen also auch die Voraussetzungen des Ansatzes, 

insbesondere die Konstanz der ,,virtuellen‘‘ Reibung im wesentlichen 

zutreffend zu sein. 

Pa eat hear e oe ‘ ‘ pads 
Tabelle fiir die Geschwindigkeitsverteilung im Kreisrohr. 

(Nach Mohoroviti¢). 

r Pk on 4 (Rechnung) ie (Rechnun 
Yo 4 (Versuch) | m=2200 | m = 3000 a 

0 1,167 1,167 1,167 
0,125 1,160 1,162 | 1,162 
0,250 1,147 | 1,146 | 1,146 
0,375 1.126 | 1,120 | 1,120 
0,500 1,092 1,084 | 1,084 
0,625 | 1.047 1,037 | 1,037 
0.750 1,001 0,980 | 0,980 
0,875 0,922 | 0,912 | 0,912 
0,937 0.846 0,875 0,875 
0,999 0,741 | 0,741 | 0,792 
1,0 0,— (i o= 
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Wenn die Zahl m bestimmt ist, so ergibt die Relation (13) den Wert g. 
Dann erhalt man mit A—1 fiir die DurchfluBmenge 

a Op 
Aa 1 

vf — _ — 

Wy iB m(m+2) mm? nie 

m+2 m D(a) oe a 

Setzt man mit Mohorovitié noch a=—., so lassen sich die Kon- 
{2 

k ze 
stanten k bzw. 7 und f den verschiedenen Messungsresultaten anpassen. u 

Aber nicht nur der Fall stationirer mittlerer Geschwindigkeit, sondern 
auch der instationare Fall scheint von der vorliegenden Theorie im ganzen 

richtig wiedergegeben zu werden. Insbesondere konnte Mohorovitié 

zeigen, was hier nicht naher dargelegt werden soll, da das durch 

die Versuche von O. Reynolds, Couette und E. Bose festgestellte 

empirische Gesetz fiir das Druckgefille?) 

(16) Dr —p=Ap-(=), 

wo ¢t die Zeit bedeutet, 4 eine Konstante ist und s etwa zwischen 1,6 

und 1,95 liegt, als spezieller Fall aus einer allgemeinen Beziehung ab- 

geleitet werden kann. Es bleibt abzuwarten, ob die weiteren, bereits 

angekiindigten Ver6ffentlichungen von MohoroviCcié iiber die bisherigen, 

wesentlich formalen Leistungen der Theorie hinaus eine wirkliche Be- 

reicherung der physikalischen Vorstellungen vom Wesen der turbulenten 

Erscheinungen bringen werden. 

§ 95. Mechanische Ahnlichkeit und Turbulenz. 
1. Einen neuen Versuch, das Geschwindigkeits- und Widerstandsgesetz 

der ausgebildeten turbulenten Str6mung mit einem Minimum von will- 

kiirlichen Annahmen abzuleiten, hat v. Karman unternommen, der um 

so bemerkenswerter ist, als er eine sehr vollstandige Ubereinstimmung 

mit den Versuchen erzielt. Wir nehmen wieder an, daB die mittlere Stré- 

mung eine Parallelstrémung in der x-Richtung sei, und daf die Schwan- 

kungsstromung in der y-Richtung nur eine geringe Ausdehnung haben 

mége. Der wesentliche Gedanke, von dem v. Karman ausgeht, besteht 

in der Annahme, dafi mechanische Ahnlichkeit des Schwankungszustandes 

1) Vgl. Cl. Schaefer, Einfiihrung in die theoretische Physik, I. Bd., Leipzig 

1914, S. 905f. 

2) Th. v. Karman, Mechanische Ahnlichkeit und Turbulenz, Nachrichten der 

Gesellschaft der Wissenschaften zu Gottingen, Berlin 1930, 8. 58—76; vgl. auch 

den Verhandlungsbericht zum III. Intern. Kongress fiir techn. Mechanik, Stock- 

holm 1930. 

23% 
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unabhingig sei von der Lage des durch y gekennzeichneten Ortes, in 

dessen Nahe wir den Zustand untersuchen. Legen wir etwa die Ko- 

ordinatenachsen so, daB der zu untersuchende Punkt die Koordinate 

y=0 haben mége. Dann kénnen wir fiir die Geschwindigkeit der Grund- 

stromung und die Stromfunktion die Entwicklungen ansetzen 

| o=,1 yo +, 

(1) y 

| P(x,y) = a ae +--+ w(a,y); 

wo » sich auf die a aaa ee (v’) bezieht. Setzen wir nun 

(2) Gale Y= iy W=ALen) 

und verlangen, daf} nur / und A von der Lage, also von Vo. V, abhangen, 

{ dagegen davon unabhangig sein soll, dann ergibt die bekannte Diffe- 

rentialgleichung fiir die Stromfunktion des ebenen Falles durch Ein- 

setzen von (1) die Beziehung 

+ AdsfF Adfs  AtOfatf Ofd4f 
(3) Dts aE 7 oes os EB O& Of On 

=0, 

die unabhingig von 4, J, Vos v, erfillt ist, wenn die Proportional- 

beziehungen bestehen 

a A pe ae= \8 e8 

(4) VIL; On eels oot ; Awe 0!” ME 
I Vo (v9)? 

Die Schubspannung wird 

A? Of 0; an 
T=— 00, Oy =0—— B cia oder tol», . 

Die Lange /, die fiir das Schwankungsfeld charakteristisch ist, stimmt 

im wesentlichen iiberein mit dem von Prandtl]! eingefiihrten sogenannten 

Mischungsweg, der eine aihnliche Rolle spielt wie die freie Weglange in 

der kinetischen Gastheorie. Prandtl] definiert ihn als den Weg, den 

eine bewegte Fliissigkeitsmasse zuriicklegt, bevor sie durch Vermischung 

mit Nachbarmassen ihre Individualitit aufgibt. Bei der Verschiebung 
ue : ir oe 

um die Strecke / quer zur Stromrichtung wird sich die Geschwindigkeit 
der Masse von der an dem neuen Ort herrschenden egg um 

einen Betrag unterscheiden, der in erster Anniherung gleich pee 7 Besetat 

wird. Man kann deshalb v,=1% setzen. Damit ist 01% aa Impuls- 
betrag, den das Teilchen an die Schicht, in die es durch die Mischbewegung 

1) ite Prandtl, Bericht iiber Untersuchungen iiber ausgebildete Turbulenz, 
Z.f. a. M. M., Bd. 5 (1925), S. 136; ferner Uber die ausgebildete Seer aa Ver- 
handlungen des I. Intern. Kongresses fiir Mechanik, Ziirich (1927), S. 6 
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gelangt, tibertriigt. Die Querbewegung v, entsteht dadurch, daB zwei 
Teilchen mit verschiedenem vy, zusammenprallen oder sich voneinander 
entfernen. Prandtl setzt sie proportional mit 7 und dem Absolut- 

betrag 0] . Man erhalt daher in Ubereinstimmung mit dem v. KArmAén- 

schen Ansatz fiir die scheinbare Schubspannung 

2. Wenn wir eine Strémung zwischen zwei parallelen Wanden y= -+ h 

voraussetzen, so haben wir mit der Substitution 

ee ee i ask k? 0 = 

oder 

ey lg 
(v)? /t Vy 

Va 
Durch einmalige Integration entsteht daraus 

/% 
dv al Q 1 

dy 2k ‘| h a= Vy (5) 

ds z WD Lif svn 
Fiir groBe Kennzahlen muBb ors sich dem Grenzwert —° nahern, der 

y u 

wegen der Kleinheit von yw sehr gro8 ist gegentiber den ‘Werten, die > 

in einiger Entfernung von der Wand annimmt. Wir kénnen daher a= Vh 

setzen und erhalten dann 

|/% 
dia el | or ml 

dy 8 2b Yh yh Vy (5a) 

Nochmalige Integration ergibt ferner mit Umax = Vo 

= 4 1y/% ony a 

y v= vo +z] ¢ [8 Vr) +] aR 
2 ‘ T " : 

Entnimmt man die Werte von —° den Versuchen von Dénch*) und 
) 

Nikuradse2) und setzt die Konstante k=0,36, so erhalt man, wie die 

Abb. 118 zeigt, eine sehr gute Ubereinstimmung mit den Messungen. 

1) F. Dénch, Forschungsarbeiten, Heft 282 (1926). 

2) I. Nikuradse, Forschungsarbeiten, Heft 289 (1929). 
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Ubrigens liBt sich auch fiir die turbulente Geschwindigkeitsverteilung 

im Kreisrohr. wie die in Abb. 119 wiedergegebenen Versuchsergebnisse 

zeigen, im wesentlichen dieselbe GesetzmaBigkeit feststellen. . 

Fiir den Mischungsweg / ergibt die 

. Rechnung 
25 > 

(7) ee =2Kn\/£(1—] 2 
la qk D 

Setzt man in der Nahe der Wand 

ai ‘r y=h—y,, so erhalt man 

Sy 

S = Obp i eee (Ja) l=2kh\J1-P+e-h 
Kanalmiite 

a | > cS _ eis [o'6) >|S nw 

-| Der Verlauf von ue stimmt nicht vollstin- 
(2), h 

10 dig mit den Versuchsergebnissen tiberein, 

die sich auf die Formel 

is stiitzen; wihrend hier die GréBe J in der 

Kanalmitte einen konstanten Wert an- is 
0 i ay, Ly nimmt, erhalt sie bei v. Karman bei 

ERTaT Career eet net ee yi=*h ein Maximum, um dann in der 

telone = ee shee, (Nach Mitte des Kanals auf Null abzufallen. 

v. Karman.) vy. Karman spricht die Vermutung aus, 

da das Beobachtungsmaterial nicht aus- 

reicht, um den Verlauf von / in der Kanalmitte einwandfrei festzulegen. 

3. In der Nahe der Wand, wo das Geschwindigkeitsgefalle sehr gro8B 

wird, darf die Zahigkeit nicht mehr vernachlassigt werden. Fiir dieses 

Gebiet benutzt v. Karman die Vorstellung, daB in der Wandnihe eine 

Art Laminarschicht existiert, und daB die Lange / nicht bis auf Null ab- 

nimmt, sondern nur bis zu einem Kleinstwert an der Grenze der Laminar- 
schicht, der mit deren Dicke proportional ist. Einem Gedanken G. J. Tay- 
lors entsprechend kénnen wir annehmen, da die Wirbelteilung der 
Wandturbulenz und daher auch die charakteristische Linge nur von der 

Schubspannung t) abhangt und durch den Ausdruck 

—r, 

os 0 |S" | 
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Gorstellban ist, wo @ einen Proportionalitatsfaktor bedeutet; dabei wird 
die von der Wand aus geziihlte Koordinate nach Cz) 

Lie eis 
aie i 

Wegen = =—Yy, ergibt sich 

— — ye (8) ates =) I <2] h | AES 0 » SOUR Sa paler a eos ere ae 
- 

0&0 

© €=01 mm 

2 EX02mm 

° €=04 mm 

@ EX08 mm 

6 

i-o a 
(To § 

es 

2 ae Z 

if 

a, pea 
0 02 04 06 Ge 0 

Abb. 119. Geschwindigkeitsverteilung in glatten und rauhen Kreisrohren mit 

Q = 6,103 em*/s; r = 1,25 bis 1,2 em. (Nach Nikuradse.) 

Ferner ist der Geschwindigkeitsunterschied o** zwischen den beiden 
a oe 

Grenzen der Laminarschicht, da die Dicke der Schicht 0X /=, ferner 
0 
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WRK r 

fiir die Randspannung To = ¢ —_ gesetzt werden kann, aus der Gleichung 

To v 

Ig—— + Al. : = Ig 

(9) vo =i += =F] 

zu entnehmen. Fiihrt man ferner die GroBen 

V-h 2 
Rom —— —— . y= 

ein, so liefert die Gleichung (9) folgende Beziehung 

ky? _ 
Vy 
ky2 = 
a = lg(Rm Vw) <= CF 

die, obwohl zuniichst nur fiir den ebenen Fall abgeleitet, ebenso fiir kreis- 

formige Rohre gilt, wobei k denselben Wert behalt und nur die Kon- 

lg(Rm)p) + A —Flg2 
(10) 

Pl rr  (®n VO) 
cA J ¥ g 6 

Abb. 120. Widerstandsgesetz fiir glatte Kreisrohre. (Nach v. KArm4n.) 

a 5 . . Ye v i r re. stante O abgeiindert, ferner ®,, durch —° — ersetzt werden muB. In der 
hers 1 i 

Abb. 120 ist die Za — j aingigkeit vc | ie Zahl ‘ai in Abhangigkeit von lg(R,,/W) nach der 

v. Karmanschen Rechnung und fiir verschiedene Versuchswerte auf- 
getragen. Man erhilt in beiden Fallen mit groBer Anniherung eine lineare 
Abbeogigkelt in einem Bereich, der von R,,= 2000 bis R,, = 1600000 
sich erstreckt. Dabei ergeben sich die beiden Konstanten zu 

k=0,38, C=1,83, 
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wobei C sich speziell auf Kreisrohre bezieht, wahrend k wahrscheinlich 
eine universelle Konstante ist, die von der Form der Grenzen nicht be- 
ruhrt wird. 

4. Es wurde frither dem Ansatz 

(11) w = const R-” 

entsprechend die Verteilungsformel 

a m 
1 UG = 

hima If Shi Wain 

(12) v = const le (ia 
o3 ry 

gegeben. Wenn man nun die v.Ka4rmanschen Relationen mit Be- 

nutzung von (10) und der daraus sich ergebenden Gleichung 

| ‘i { @ 
ae 

y 
lg = const + Igy 

auf die Form bringt 

eel: 
ye Ot ols RV) =a + le RY yy, 

== Ob le( =) =a+lg Bar 
iy @ 
Q 

so sieht man, daB sich die bekannten Potenzgesetze dadurch ergeben, 

daB man den logarithmischen Verlauf der beiden maigebenden GréBen 

durch héhere Parabeln annahert. Dabei bestatigt sich auch die Erfah- 

Si = (13) 

rungstatsache, dafi der Exponent 5 ==n mit wachsender Kennzahl 

abnimmt. Fiir zwei Stromungszustinde in demselben Kanal, bei denen 7) 

denselben Wert hat, v aber verschieden ist, erhalt man dieselbe Geschwin- 

digkeitsverteilung bis zur Grenze der Laminarschicht, an der der Einfluf- 

der Zahigkeit beginnt. Da die Dicke der Laminarschicht mit abnehmen- 

dem y, also mit wachsender Reynoldsscher Zahl kleiner wird, also die 

Grenze an der v-Kurve weiterriickt, so geht auch der Beritthrungspunkt 
1 

der Naherungsparabel y; =>" mit der Achse y,=0 (Abszissenachse des 

v-Diagramms) weiter nach rechts, und es ergibt sich gleichzeitig, daB die 

Bertihrung immer flacher ausfallt, oder dal} S mit wachsender Kennzahl 

zunimmt. In dem bezeichneten Intervall von ® (2 -103 bis 16 - 10°) wachst 

= vom Wert 7 bis auf etwa 9,5. 

5. SchlieBlich kénnen wir noch eine Folgerung fiir die Verhaltnisse © 

in sehr rauhen Rohren anfiihren. Hier spielt das Verhaltnis zwischen der 
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Dicke der Laminarschicht und der mittleren Erhebung der Rauhigkeit 

eine maBgebende Rolle. Wenn die Erhebungen der Wand groB sind gegen 

die Dicke der Laminarschicht, so ist der Kleinstwert der Linge / im 

wesentlichen durch die Abmessungen des Rauhigkeitselementes bedingt. 

v. Karman fihrt die mittlere Rauhigkeitserhebung ¢ ein und erhalt dann, 

wenn / proportional mit ¢ gesetzt wird, die Beziehung 

Seley) tae ee 
(14) Vo = =| : (lz - + const} 

und fiir die Widerstandszahl 

ky2 

yw 

I 
(15) = Ie + const. 

Der Stré6mungswiderstand gehorcht also dem quadrati- 

schen Gesetz, und der Widerstand hingt von der relativen Rauhigkeit 

ab. Eine Weiterfiihrung dieser Betrachtung, insbesondere der Vergleich 

mit den Versuchen an Rinnen, ist von v. Karman in Aussicht gestellt, 

aber bis zum AbschluB dieses Werkes noch nicht bekannt geworden. 

Auch die inzwischen fortgeschrittenen, noch nicht vollstandig verdffent- 

lichten einschlagigen Géttinger Arbeiten zum Turbulenzproblem, iiber 

die Prandtl gelegentlich der Physiker-Tagung in Bad Elster sowie in 
Prag Bericht erstattet hat, konnten in dieser Ubersicht keine Beriick- 
sichtigung mehr finden. 
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