Kapitel V. Konstruktionen unter besonderen Bedingungen. 141 Seite durch A geht; es wird so lange um 4 gedreht, bis die Seite [CD] durch den gegebenen Punkt D geht. Man kann dasselbe offenbar mit zwei rechten Winkeln erreichen, deren einen man in die Lage ABC, den anderen in die Lage BCD bringt. In dieser Auffassung ist das Verfahren verallgemeinerungsfähig. Um z. B. eine fünfte Wurzel zu ziehen, oder, was dasselbe ist, zwischen zwei Strecken OA, OF vier geometrische Mittel einzu- schalten, bringe man vier rechte Winkel in die Lagen ABC, BCD, CDE, DEF, dann ist (Fig. S. 140) OA: OB OB: OC OC: OD OD: OE OE: OF. = = = = = Descartes¹) hat ein ähnliches Verfahren mit rechten Winkeln; er braucht aber im vorliegenden Falle deren fünf. Bringt man sie in die Lage OAB, OBC, OCD, ODE, OEF usw., so ist: ОА:ОВ: = OB: OC OC: OD OD: OE usw. = = BDF ACEG Von Interesse ist aber, daß sich der Grundgedanke auf die Auf- lösung polynomischer Gleichungen ausdehnen läßt. Um das z. B. für die kubische Gleichung ax + bx²+ cx + d = 0 zu zeigen, betrachten wir die Figur, in welcher der rechtwinklige Linienzug 00₁0,0304 die Seiten a, b, c, d hat. Ist dann ist also: 0A tg 400₁ = x, O₁A = ax, ОA = ax + b, 0,B= ax² + bx, 03B= ax² + bx + c, 03 C = ax³ + bx² + cx, 0₁C = ax³ + bx² + cx + d; 0 01 a b B Oz C 103 also muß man die rechten Winkel OAB, ABC in solche Lage bringen, daß der Schenkel BC durch O, geht, dann ist die Gleichung aufgelöst. Natürlich ist ein negatives a nach rechts, ein negatives b nach oben, ein negatives cp P nach links, ein negatives d nach unten anzutragen.) Descartes' Apparat steht auch in Analogie zu dem Meso- labium des Erathostenes (siehe S. 77), das ebenfalls der Ein- schaltung von zwei geometri schen Mitteln diente. Drei kon- 0 PR' PR" R" 01 O' Oz 0" 0" gruente Rechtecke OPO'R, 0,и0″R”, О½Ð¸0""R"" sind zwischen 1) Geometria, lib. II. 2 2) E. Lill, Nouv. ann. (2) (1867), VI p. 359.