II 65 1 INDUCTION IN ROTATING SPHERES W w' = a K X_ dy ax'" y To verify this we first express the conditions for in Proof. terms of Χη We have (§ 1, 4) ▼²U = m(m+2n+1)p ax m-2 y az dy V²V = m(m+2n+1)p' m-2 V²W=m(m + 2n+1)pm-2(x- - Xnx მე: az -y· dy Jx Xx - nzxn az Xn дх a yV²U − xV²V = m(m + 2n+1)pm-2( m(m+2n+1)p™-²(p² zV²V - yV²W = m(m+2n+1)pm-2( 2V²W - 2V²U = m(m + 2n+1)pm-: And again- av да aw dy - - au dy az au aw az Əx = = - Hence we get mpm m-2 mp m- Xn xn), nx Xn dxn – nyx») › dy (p³ ³X - naxa) - p" (n+1) X^, Əz 2 Xn Jx nzXn Əz nxxn ) − p™ (n + 1) - X", до mp"-2(p²? JXn- ǝy — nyx« ) − p™ (n + 1) Xn Dy 0 = = - n(n + 1)pmXn • wm(m+2n+3)(p2 Xn nzXn Əz ³xn)pm-3 The conditions for become ² = - M. P. - 2w(n + 1)pm Xn Əz F GENUE ENUNTERING LAT