2 en, also [FS], [LW], [A₁A₂] durch einen die Dreiecke E₁FS, und R₁LW2, [[EF] [R₁L]) ([FS2] [LW₂])] = [A₁ A₂] die Addition 123 und Multiplikation 119 der Distributive Gesetz (q + r) p = qp + rp. (S. Fig. S. 121.) QE1A0 A1) = (Q2E2 AA₂), r = (R₁ E₁ AA₁), A₁), qp = (T₁E₁AA₁) = (T2 E2A, A₂), , qp + rp = (W2E2A0A2), 11) (P2 F2 A0 A2) = (W2E2AA₂), EAA₁) = (W₂ PA, A₂), 0 22 2] und [P2E₁] auf [A₁A2] 0 [QA₁]), W' = ([T₁ A₂] [U₂ A₁]) [UA]), N = ([SA][W₂ A₁]) 1 ][U₂A₁]), M' = ([R₁ A₂] [W₂ A₁]), 2